OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 4 — Feb. 1, 2008
  • pp: 489–494

Design rules for phase-matched terahertz surface electromagnetic wave generation by optical rectification in a nonlinear planar waveguide

Roman R. Musin, Qirong Xing, Yanfeng Li, Minglie Hu, Lu Chai, Qingyue Wang, Yuliya M. Mikhailova, Maksim M. Nazarov, Alexander P. Shkurinov, and Aleksei M. Zheltikov  »View Author Affiliations

Applied Optics, Vol. 47, Issue 4, pp. 489-494 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theory of guided waves in metal–dielectric planar multilayer structures is applied to reduce the loss and maximize optical nonlinearity for efficient terahertz-field generation in a surface electromagnetic wave by femtosecond laser pulses confined in a χ ( 2 ) nonlinear planar waveguide. For typical parameters of thin-film polymer waveguides and metal–dielectric interfaces, the optimal size of the χ ( 2 ) waveguide core providing the maximum efficiency of terahertz plasmon-field generation is shown to be less than the wavelength of the optical pump field.

© 2008 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: July 27, 2007
Revised Manuscript: October 12, 2007
Manuscript Accepted: November 9, 2007
Published: January 22, 2008

Roman R. Musin, Qirong Xing, Yanfeng Li, Minglie Hu, Lu Chai, Qingyue Wang, Yuliya M. Mikhailova, Maksim M. Nazarov, Alexander P. Shkurinov, and Aleksei M. Zheltikov, "Design rules for phase-matched terahertz surface electromagnetic wave generation by optical rectification in a nonlinear planar waveguide," Appl. Opt. 47, 489-494 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  2. C. A. Schmuttenmaer, "Exploring dynamics in the far-infrared with terahertz spectroscopy," Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004). [CrossRef] [PubMed]
  3. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996). [CrossRef] [PubMed]
  4. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996). [CrossRef]
  5. X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002). [CrossRef] [PubMed]
  6. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005). [CrossRef]
  7. L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, "Propagation of THz plasmon pulse on corrugated and flat metal surface," Surf. Sci. 600, 4771-4776 (2006). [CrossRef]
  8. P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004). [CrossRef]
  9. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003). [CrossRef]
  10. M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002). [CrossRef]
  11. R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultra-wideband, short pulses of THz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999). [CrossRef]
  12. G. Gallot, S. P. Jamison, R. W. McGowan, and D Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000). [CrossRef]
  13. R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001). [CrossRef]
  14. K. Wang and M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  15. T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005). [CrossRef]
  16. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449 (2000). [CrossRef]
  17. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987 (2000). [CrossRef]
  18. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634 (2002). [CrossRef]
  19. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006). [CrossRef] [PubMed]
  20. T. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  21. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006). [CrossRef] [PubMed]
  22. H. Cao, R. A. Linke, and A. Nahata, "Broadband generation of terahertz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004). [CrossRef] [PubMed]
  23. C.-L. Chen, Foundation for Guided-Wave Optics (Wiley, 2006).
  24. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983). [CrossRef] [PubMed]
  26. N. Laman and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90, 122115 (2007). [CrossRef]
  27. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, "THz surface plasmon jump between two metal edges," Opt. Commun. 271, 33-39 (2007). [CrossRef]
  28. J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range"Phys. Rev. B 69, 155427 (2004). [CrossRef]
  29. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  30. A. M. Zheltikov, "The physical limit for the waveguide enhancement of nonlinear-optical processes," Opt. Spectrosc. 95, 410-415 (2003). [CrossRef]
  31. M. Foster, K. Moll, and A. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004). [CrossRef] [PubMed]
  32. A. M. Zheltikov, "Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires," J. Opt. Soc. Am. B 22, 1100-1104 (2005). [CrossRef]
  33. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited