OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 6 — Feb. 20, 2008
  • pp: 799–806

Effects of the time dependence of a bioluminescent source on the tomographic reconstruction

Mehmet Burcin Unlu and Gultekin Gulsen  »View Author Affiliations


Applied Optics, Vol. 47, Issue 6, pp. 799-806 (2008)
http://dx.doi.org/10.1364/AO.47.000799


View Full Text Article

Enhanced HTML    Acrobat PDF (1554 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There are two goals in this simulation study: (1) to show that the time variation of the bioluminescence source can cause artifacts in the tomographic images such that quantification and localization becomes impossible; and (2) to show that the a priori knowledge of the light kinetics can be used to eliminate these artifacts. These goals are motivated by the fact that the half-life of luciferase has been reported as 30 min to 2 h in vivo. We perform two-dimensional simulations. We consider a 40   mm diameter circular region with an inclusion of 6   mm diameter located 10   mm away from the center. The measurement data is simulated using a finite-element-based forward solver. We model the noncontact measurements such that four-wavelength data is collected from four 90° apart views. The results show that the ratio of the total imaging time to the half-life of the exponentially decaying bioluminescent source is the deciding factor in the reconstruction of the source. It is also demonstrated that a priori knowledge of the source kinetics is required to perform tomographic bioluminescence imaging of short half-life bioluminescent sources and the use of spatial a priori information alone is not adequate.

© 2008 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 9, 2007
Manuscript Accepted: November 10, 2007
Published: February 19, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Mehmet Burcin Unlu and Gultekin Gulsen, "Effects of the time dependence of a bioluminescent source on the tomographic reconstruction," Appl. Opt. 47, 799-806 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-6-799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Contag, “Molecular imaging using visible light to reveal biological changes in the brain,” Neuroimaging Clin. N. Am. 16, 633-654 (2006). [CrossRef] [PubMed]
  2. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002). [CrossRef] [PubMed]
  3. C. H. Contag and B. D. Ross, “It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J Magn. Reson. Imaging 16, 378-387 (2002). [CrossRef] [PubMed]
  4. A. Sling and N. G. Rainov, “Bioluminescence imaging in vivo--application to cancer research,” Expert Opin. Biol. Ther. 3, 1163-1172 (2003).
  5. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004). [CrossRef] [PubMed]
  6. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 2045-2053 (2006). [CrossRef] [PubMed]
  7. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]
  8. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005). [CrossRef] [PubMed]
  9. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365-367 (2006). [CrossRef] [PubMed]
  10. W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006). [CrossRef] [PubMed]
  11. W. Cong and G. Wang, “Boundary integral method for bioluminescence tomography,” J. Biomed. Opt. 11, 020503 (2006). [CrossRef] [PubMed]
  12. S. Li, Q. Zhang, and H. Jiang, “Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments,” App. Opt. 45, 3390-3394 (2006). [CrossRef]
  13. V. Y. Soloviev, “Tomographic bioluminescence imaging with varying boundary conditions,” Appl. Opt. 46, 2778-2784 (2007). [CrossRef] [PubMed]
  14. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006). [CrossRef] [PubMed]
  15. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007). [CrossRef] [PubMed]
  16. J. Virostko, A. C. Powers, and E. D. Jansen, “Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images,” Appl. Opt. 46, 2540-2547 (2007). [CrossRef] [PubMed]
  17. M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007). [CrossRef] [PubMed]
  18. J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003). [PubMed]
  19. C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005). [CrossRef] [PubMed]
  20. A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005). [CrossRef] [PubMed]
  21. I. Barash and M. Reichenstein, “Real-time imaging of beta-lactoglobulin-targeted luciferase activity in the mammary glands of transgenic mice,” Mol. Reprod. Dev. 61, 42-48 (2002). [CrossRef] [PubMed]
  22. J. M. Ignowski and D. V. Schaffer, “Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells,” Biotechnol. Bioeng. 86, 827-834 (2004). [CrossRef] [PubMed]
  23. L. Nuez, W. J. Faught, and L. S. Frawley, “Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons,” Proc. Natl. Acad. Sci. U.S.A. 95, 9648-9653 (1998). [CrossRef]
  24. J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001). [CrossRef] [PubMed]
  25. G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000). [PubMed]
  26. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).
  27. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  28. A. Franchois and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt Method,” IEEE Trans. Antennas Propag. 45, 203-215 (1997). [CrossRef]
  29. B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited