OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 6 — Feb. 20, 2008
  • pp: 807–816

Comparison of simulated quenching algorithms for design of diffractive optical elements

J. S. Liu, A. J. Caley, A. J. Waddie, and M. R. Taghizadeh  »View Author Affiliations

Applied Optics, Vol. 47, Issue 6, pp. 807-816 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the performance of very fast simulated quenching; generalized simulated quenching, which unifies classical Boltzmann simulated quenching and Cauchy fast simulated quenching; and variable step size simulated quenching. The comparison is carried out by applying these algorithms to the design of diffractive optical elements for beam shaping of monochromatic, spatially incoherent light to a tightly focused image spot, whose central lobe should be smaller than the geometrical-optics limit. For generalized simulated quenching we choose values of visiting and acceptance shape parameters recommended by other investigators and use both a one-dimensional and a multidimensional Tsallis random number generator. We find that, under our test conditions, variable step size simulated quenching, which generates each parameter's new states based on the acceptance ratio instead of a certain theoretical probability distribution, produces the best results. Finally, we demonstrate experimentally a tightly focused image spot, with a central lobe 0.22–0.68 times the geometrical-optics limit and a relative sidelobe intensity 55%–60% that of the central maximum intensity.

© 2008 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.5090) Image processing : Phase-only filters
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.3670) Optical devices : Light-emitting diodes

ToC Category:

Original Manuscript: August 8, 2007
Revised Manuscript: November 27, 2007
Manuscript Accepted: December 7, 2007
Published: February 19, 2008

J. S. Liu, A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, "Comparison of simulated quenching algorithms for design of diffractive optical elements," Appl. Opt. 47, 807-816 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788-2798 (1987). [CrossRef] [PubMed]
  2. H. P. Herzig, Micro-optics. Elements, Systems and Applications (Taylor & Francis, 1997).
  3. J. N. Gillet and Y. Sheng, “Iterative simulated quenching for designing irregular-spot-array generators,” Appl. Opt. 39, 3456-3465 (2000). [CrossRef]
  4. M. J. Thomson and M. R. Taghizadeh, “Diffractive elements for high-power fibre coupling applications,” J. Mod. Opt. 50, 1691-1699 (2003).
  5. S. V. Salinas, C. W. Chang, and S. C. Liew, “Multiparameter retrieval of water optical properties from above-water remote-sensing reflectance using the simulated annealing algorithm,” Appl. Opt. 46, 2727-2742 (2007). [CrossRef] [PubMed]
  6. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Opimization by simulated annealing,” Science 220, 671-680 (1983). [CrossRef] [PubMed]
  7. H. Szu and R. Hartley, “Fast simulated annealing,” Phys. Lett. A 122, 157-162 (1987). [CrossRef]
  8. L. Ingber, “Very fast simulated reannealing,” Math. Comput. Modell. 12, 967-973 (1989). [CrossRef]
  9. L. Ingber, “Simulated annealing--practice versus theory,” Math. Comput. Modell. 18, 29-57 (1993). [CrossRef]
  10. L. Ingber, “Adaptive simulated annealing (ASA): lessons learned,” Contr. Cybernet. 12, 967-973 (1995).
  11. I. I. Rosen, K. S. Lam, R. G. Lane, M. Langer, and S. M. Morrill, “Comparison of simulated annealing algorithms for conformal therapy treatment planning,” Int. J. Radiat. Oncol. , Biol., Phy. 33, 1091-1099 (1995). [CrossRef]
  12. J. M. Sutter and J. H. Kalivas, “Convergence of generalized simulated annealing with variable step size with application toward parameter estimations of linear and nonlinear models,” Anal. Chem. 63, 2383-2386 (1991). [CrossRef]
  13. C. Tsallis and D. A. Stariolo, “Generalized simulated annealing,” Physica A 233, 395-406 (1996). [CrossRef]
  14. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern. Arial. Mach. Intell. 6, 721-741 (1984). [CrossRef]
  15. J. N. Gillet and Y. Sheng, “Iterative simulated quenching for designing irregular-spot-array generators,” Appl. Opt. 39, 3456-3465 (2000). [CrossRef]
  16. T. Schanze “An exact D-dimensional Tsallis random number generator for generalized simulated annealing,” Comput. Phys. Commun. 175, 708-712 (2006). [CrossRef]
  17. J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Diffractive optical elements for beam shaping of monochromatic spatially incoherent light,” Appl. Opt. 45, 8440-8447 (2006). [CrossRef] [PubMed]
  18. M. Mitchell, Z. G. Chen, M. F. Shih, and M. Segev “Self-trapping of partially spatially incoherent light,” Phy. Review. Lett. 77, 490-493 (1996). [CrossRef]
  19. E. Smirnov, M. Stepic, V. Shandarov, and D. Kip “Pattern formation by spatially incoherent light in a nonlinear ring cavity,” Appl. Phy. B 85, 135-138 (2006). [CrossRef]
  20. C. W. Jeon, E. Gu, and M. D. Dawson, “Mask-free photolightographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phy. Lett. 86, 221105 (2005). [CrossRef]
  21. Y. Xiang, D. Y. Sun, W. Fan, and X. G. Gong, “Generalized simulated annealing and its application to the Thomson model,” Phys. Lett. A 233, 216-220 (1997). [CrossRef]
  22. E. R. Correia, V. B. Nascimento, C. M. C. D. Castilho, A. S. C. Esperidiao, E. A. Soares, and V. E. D. Carvalho, “The generalized simulated annealing algorithm in the low energy electron diffraction search problem,” J. Phys.: Condens. Matter 17, 1-16 (2005). [CrossRef]
  23. A. Dall'Igna, R. S. Silva, K. C. Mundim, and L. E. Dardenne, “Performance and parametrization of the algorithmn Simplified Generalized simulated annealing,” Genet. Mol. Biol. 27, 616-622 (2004). [CrossRef]
  24. D. Nam, J. S. Lee, and C. H. Park, “n-dimensional Cauchy neighbor generation for the fast simulated annealing,” IEICE Trans. Inf. Syst. E87-D, 2499-2502 (2004).
  25. J. Li, K. J. Webb, G. J. Burke, D. A. White, and C. A. Thompson, “Design of near-field irregular diffractive optical elements by use of a multiresolution direct binary search method,” Opt. Lett. 31, 1181-1183 (2006). [CrossRef] [PubMed]
  26. H. Nishihara and I. Suhara, “Micro Fresnel Lenses,” Prog. Opt. 24, 1-37 (1987). [CrossRef]
  27. T. J. Suleski and D. C. O'Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507-7517 (1995). [CrossRef] [PubMed]
  28. S. Teng, L. Liu, J. Zu, Z. Luan, and D. Liu, “Uniform theory of the Talbot effect with partially coherent light illumination,” J. Opt. Soc. Am. A 20, 1747-1754 (2003). [CrossRef]
  29. Z. Zhai and B. Zhao, “Diffraction intensity distribution of an axicon illuminated by polychromatic light,” J. Opt. A , Pure Appl. Opt. 9, 862-867 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited