OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 7 — Mar. 1, 2008
  • pp: 986–992

Effect of incidence angle on laser scanner intensity and surface data

Antero Kukko, Sanna Kaasalainen, and Paula Litkey  »View Author Affiliations


Applied Optics, Vol. 47, Issue 7, pp. 986-992 (2008)
http://dx.doi.org/10.1364/AO.47.000986


View Full Text Article

Enhanced HTML    Acrobat PDF (15952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive experimental set of data on the dependence of the laser intensity on the angle of incidence to the target surface. The measurements have been performed in the laboratory for samples with a Nd:YAG laser and terrestrial laser scanner. The brightness scale data were also compared with data acquired by airborne laser scanning (ALS). The incidence angle effect is evident for all the targets. The effect is significant for incidence angles > 20 ° , and stronger for bright targets. However, effects due to some of the other surface properties, such as roughness, were also detected. We also found a set of gravel samples for which the incidence angle effect was minor even up to 40 ° . The data provide an important reference for the interpretation and applications, e.g., full-waveform data processing of a laser scanner and ALS intensity calibration.

© 2008 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.5820) Scattering : Scattering measurements
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: August 23, 2007
Revised Manuscript: December 7, 2007
Manuscript Accepted: January 4, 2008
Published: February 29, 2008

Citation
Antero Kukko, Sanna Kaasalainen, and Paula Litkey, "Effect of incidence angle on laser scanner intensity and surface data," Appl. Opt. 47, 986-992 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-7-986


Sort:  Year  |  Journal  |  Reset  

References

  1. J. Ellis, P. Caillard, and A. Dogariu, “Off-diagonal Mueller matrix elements in backscattering from highly diffusive media,” J. Opt. Soc. Am. A 19, 43-48 (2002). [CrossRef]
  2. V. A. Ruiz-Cortés and J. C. Dainty, “Experimental light-scattering measurements for large-scale composite random rough surfaces,” J. Opt. Soc. Am. A 19, 2043-2052 (2002). [CrossRef]
  3. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692-2695 (1985). [CrossRef] [PubMed]
  4. D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events of light in disordered media,” Phys. Rev. Lett. 74, 4193-4196 (1995). [CrossRef] [PubMed]
  5. G. D. Yoon, N. G. Roy, and R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580-585 (1993). [CrossRef] [PubMed]
  6. S. Kaasalainen, J. Peltoniemi, J. Näränen, J. Suomalainen, F. Stenman, and M. Kaasalainen, “Small-angle goniometry for backscattering measurements in the broadband spectrum,” Appl. Opt. 44, 1485-1490 (2005). [CrossRef] [PubMed]
  7. A. Kukko and J. Hyyppä, “Laser scanner simulator for system analysis and algorithm development: a case with forest measurements,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 234-240 (2007).
  8. B. Jutzi, J. Neulist, and U. Stilla, “High-resolution waveform acquisition and analysis for pulsed laser,” in High-Resolution Earth Imaging for Geospatial Information, C. Heipke, K. Jacobsen, and M. Gerke, eds., International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 1/W3, CD-ROM (2005).
  9. G. Videen, W. S. Bickel, V. J. Iafelice, and D. Abromson, “Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle,” J. Opt. Soc. Am. A 9, 312-315 (1992). [CrossRef]
  10. J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533(2006). [CrossRef] [PubMed]
  11. B. Jutzi, B. Eberle, and U. Stilla, “Estimation and measurement of backscattered signals from pulsed laser radar,” Proc. SPIE 4885, 256-267 (2003). [CrossRef]
  12. S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppä, and E. Ahokas, “Brightness measurements and calibration with airborne and terrestrial laser scanners,” IEEE Trans. Geosci. Remote Sens. 46, 528-534 (2008).
  13. S. Kaasalainen, J. Hyyppä, P. Litkey, H. Hyyppä, E. Ahokas, A. Kukko, and H. Kaartinen, “Radiometric calibration of ALS intensity,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 201-205 (2007).
  14. S. Kaasalainen, E. Ahokas, J. Hyyppä, and J. Suomalainen, “Study of surface brightness from backscattered laser intensity: calibration of laser data,” IEEE Trans. Geosci. Remote Sens. 2, 255-259 (2005). [CrossRef]
  15. E. Ahokas, S. Kaasalainen, J. Hyyppä, and J. Suomalainen, “Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets,” presented at the ISPRS Commission I Symposium, 3-6 July 2006, Marne-la-Vallee, France; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 1 (2006).
  16. D. S. Boyd and R. A. Hill, “Validation of airborne lidar intensity values from a forested landscape using hymap data: preliminary analyses,” in Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 Espoo, 12-14 September 2007, Finland; International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, Part 3/W52, 71-76 (2007).
  17. F. Coren and P. Sterzai, “Radiometric correction in laser scanning,” Int. J. Remote Sens. 27, 3097-3104 (2006). [CrossRef]
  18. B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62 (6), 415-433 (2007).
  19. S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar--measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Trans. Geosci. Remote Sens. 4, 211-215 (2007). [CrossRef]
  20. P. Palojärvi, “Integrated electronic and optoelectronic circuits and devices for pulsed time-of-flight laser rangefinding,” Ph.D. dissertation (University of Oulu, 2003).
  21. K.-H. Thiel and A. Wehr, “Performance capabilities of laser scanners--an overview and measurement principle analysis,” International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36 Part 8/W2, 14-18 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited