OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: 114–126

Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes

Lei Bi, Ping Yang, George W. Kattawar, and Ralph Kahn  »View Author Affiliations


Applied Optics, Vol. 48, Issue 1, pp. 114-126 (2009)
http://dx.doi.org/10.1364/AO.48.000114


View Full Text Article

Enhanced HTML    Acrobat PDF (1240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The single-scattering properties of randomly oriented triaxial ellipsoids with size parameters from the Rayleigh to geometric-optics regimes are investigated. A combination of the discrete dipole approximation (DDA) technique and an improved geometric optics method (IGOM) is applied to the computation of ellipsoidal particle scattering properties for a complete range of size parameters. Edge effect con tributions to the extinction and absorption efficiencies are included in the present IGOM simulation. It is found that the extinction efficiency, single-scattering albedo, and asymmetry factor computed from the DDA method for small size parameters smoothly transition to those computed from the IGOM for moderate-to-large size parameters. The phase matrix elements computed from these two methods are also quite similar when size parameters are larger than 30. Thus, the optical properties of ellipsoidal particles can be computed by combing the DDA and the IGOM for small-to-large size parameters. Furthermore, we also examine the applicability of the ellipsoid model to the simulation of the scatter ing properties of realistic aerosol particles by comparing the theoretical and experimental results for feldspar aerosols. It is shown that the ellipsoid model is better than the commonly used spheroid model for simulating dust particle optical properties, particularly, their polarization characteristics, realistically.

© 2008 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(080.0080) Geometric optics : Geometric optics
(260.0260) Physical optics : Physical optics
(290.0290) Scattering : Scattering

ToC Category:
Scattering

History
Original Manuscript: August 19, 2008
Revised Manuscript: November 10, 2008
Manuscript Accepted: November 29, 2008
Published: December 22, 2008

Citation
Lei Bi, Ping Yang, George W. Kattawar, and Ralph Kahn, "Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes," Appl. Opt. 48, 114-126 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-1-114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995). [CrossRef]
  2. Y. Liu, W. P. Arnott, and J. Hallertt, “Particle size distribution retrieval from multispectral optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31753-31762 (1999). [CrossRef]
  3. R. Kahn, R. West, D. McDonald, B. Rheingans, and M. I. Mishchenko, “Sensitivity of multiangle remote sensing observations to aerosol sphericity,” J. Geophys. Res. 102, 16861-16870 (1997). [CrossRef]
  4. O. V. Kalashnikova and I. N. Sokolik, “Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014947 (2002). [CrossRef]
  5. H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106, 17375-17401 (2001). [CrossRef]
  6. A. Macke and M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291-4296 (1996). [CrossRef] [PubMed]
  7. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?,” J. Opt. Soc. Am. A 19, 521-531 (2002). [CrossRef]
  8. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 831-16-847 (1997). [CrossRef]
  9. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014506 (2002). [CrossRef]
  10. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, doi:10.1029/2005JD006619(2006). [CrossRef]
  11. P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014 (2007). [CrossRef]
  12. P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727-3737 (2000). [CrossRef]
  13. O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distiguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14, doi:10.1029/2004JD004550 (2005). [CrossRef]
  14. B. Veihelmann, “Sunlight on atmospheric water vapor and mineral aerosol : modeling the link between laboratory data and remote sensing,” Ph.D. thesis (Radboud University Nijmegen, 2005).
  15. S. I. Ghobrial and S. M. Sharief, “Microwave attenuation and cross polarization in dust storms,” IEEE. Trans. Antennas. Propagat. 35, 418-425 (1987). [CrossRef]
  16. F. Möglich, “Beugungerscheinungen an körpern von ellipsoidischer gestalt,” Ann. Phys. 83, 609 (1927). [CrossRef]
  17. B. D. Sleeman, “The scalar scattering of a plane wave by an ellipsoid,” J. Instr. Math. Appl. 3, 4-15 (1967). [CrossRef]
  18. A. F. Stevenson, “Solution of electromagnetic scattering problems as power series in the ratio (dimension of scatterer) wavelength,” J. Appl. Phys. 24, 1134-1142 (1953). [CrossRef]
  19. M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observations,” Appl. Opt. 33, 7206-7225 (1994). [CrossRef] [PubMed]
  20. T. Wriedt, “Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256-268 (2002). [CrossRef]
  21. J. B. Schneider and I. C. Peden, “Differential cross section of a dielectric ellipsoid by the T-matrix extended boundary condition method,” IEEE Trans. Antennas Propag. 36, 1317-1321 (1988). [CrossRef]
  22. G. T. Draine and P. J. Flatau, “User Guide to the Discrete Dipole Approximation Code DDSCAT6.1,” http://arxiv.org/abs/astro-ph/0409262v2 (2004).
  23. M. A. Yurkin and A. G. Hoekstra, “Amsterdam DDA,” http:www.science.uva.nl/research/scs/oftware/adda (2007).
  24. A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference-Time-Domain Method, 3rd ed. (Artech House, 2005).
  25. P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 173-221. [CrossRef]
  26. Q. H. Liu, “The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1044-1055 (1998). [CrossRef]
  27. G. Chen, P. Yang, and G. W. Kattawar, “Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles,” J. Opt. Soc. Am. A 25, 785-790 (2008). [CrossRef]
  28. G. J. Streekstra, A. G. Hoekstra, and R. M. Heethaar, “Anomalous diffraction by arbitrarily oriented ellipsoids: applications in ektacytometry,” Appl. Opt. 33, 7288-7296 (1994). [CrossRef] [PubMed]
  29. P. Mazeron and S. Muller, “Light scattering by ellipsoids in a physical optics approximation,” Appl. Opt. 35, 3726-3735(1996). [CrossRef] [PubMed]
  30. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996). [CrossRef] [PubMed]
  31. D. S. Jones, “Approximate methods in high-frequency scattering,” Proc. R. Soc. A 239, 338-348 (1957). [CrossRef]
  32. D. S. Jones, “High-frequency scattering of electromagnetic waves,” Proc. R. Soc. Lond. A 240, 206-213 (1957). [CrossRef]
  33. G. R. Fournier and B. T. N. Evans, “Approximation to extinction efficiency for randomly oriented spheroids,” Appl. Opt. 30, 2042-2048 (1991). [CrossRef] [PubMed]
  34. J. Zhao and Y. Hu, “Bridging technique for calculating the extinction efficiency of arbitrary shaped particles,” Appl. Opt. 42, 4931-4945 (2003). [CrossRef]
  35. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  36. A. J. Baran and S. Havemann, “Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory,” J. Quant. Spectrosc. Radiat. Transfer 63, 499-519 (1999). [CrossRef]
  37. D. L. Mitchell, W. P. Arnott, C. Schmitt, A. J. Baran, S. Havemann, and Q. Fu, “Contributions of photon tunneling to extinction in laboratory grown hexagonal columns,” J. Quant. Spectrosc. Radiat. Transfer 70, 761-776 (2001). [CrossRef]
  38. D. L. Mitchell, A. J. Baran, W. P. Arnott, and C. Schmitt, “Testing and comparing the modified anomalous diffraction approximation,” J. Atmos. Sci. 63, 2948-2962 (2006). [CrossRef]
  39. H. M. Nussenzveig and W. J. Wiscombe, “Efficiency factors in Mie scattering,” Phys. Rev. Lett. 45, 1490-1494 (1980). [CrossRef]
  40. H. M. Nussenzveig and W. J. Wiscombe, “Complex angular momentum approximation to hard-core scattering,” Phys. Rev. A 43, 2093-2112 (1991). [CrossRef] [PubMed]
  41. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, 1992). [CrossRef]
  42. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79, 775-824 (2003). [CrossRef]
  43. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  44. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  45. G. H. Goedecke and S. G. O'Brien, “Scattering by irregular inhomogeneous particles via the digitized Green's function algorithm,” Appl. Opt. 27, 2431-2438 (1988). [CrossRef] [PubMed]
  46. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007). [CrossRef]
  47. G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer. 109, 684-702 (2008). [CrossRef]
  48. P. Wendling, R. Wendling, and H. K. Weickmann, “Scattering of solar radiation by hexagonal ice crystals,” Appl. Opt. 18, 2663-2671 (1979). [CrossRef] [PubMed]
  49. S. I. Rubinow and T. T. Wu, “First correction to the geometric-optics scattering cross section from cylinders and spheres,” J. Appl. Phys. 27, 1032-1039 (1956). [CrossRef]
  50. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  51. C. Levoni, M. Cervino, R. Guzzi, and F. Torricella, “Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes,” Appl. Opt. 36, 8031-8041 (1997). [CrossRef]
  52. T. Nousiainen and K. Vermeulen, “Comparison of measured single-scattering matrix of feldspar particles with T-matrix simulations using spheroids,” J. Quant. Spectrosc. Radiat. Transfer 79, 1031-1042 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited