OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: A71–A74

Improving the system stability of a digital Shack–Hartmann wavefront sensor with a special lenslet array

L. P. Zhao, N. Bai, X. Li, Z. P. Fang, Z. W. Zhong, and A. A. Hein  »View Author Affiliations


Applied Optics, Vol. 48, Issue 1, pp. A71-A74 (2009)
http://dx.doi.org/10.1364/AO.48.000A71


View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There has been very limited study on the stability of a Shack–Hartmann wavefront sensor (SHWS) since its emergence in the early 1970s. In this paper, through experimental study of the system stability of a digital SHWS, a special lenslet array with long focal range is designed and implemented with a spatial light modulator to improve the system performance. Diffractive lenses with long focal length range can provide pseudo-nondiffracting beams and a long range of focusing plane. The performance and effect of the modified SHWS with this lenslet array are investigated, and the experimental results show that the system stability and measurement repeatability are not sensitive to the sensing distance and stay at an acceptable level.

© 2008 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(220.3620) Optical design and fabrication : Lens system design
(230.3990) Optical devices : Micro-optical devices
(230.6120) Optical devices : Spatial light modulators

History
Original Manuscript: August 15, 2008
Revised Manuscript: September 23, 2008
Manuscript Accepted: October 14, 2008
Published: November 21, 2008

Citation
L. P. Zhao, N. Bai, X. Li, Z. P. Fang, Z. W. Zhong, and A. A. Hein, "Improving the system stability of a digital Shack-Hartmann wavefront sensor with a special lenslet array," Appl. Opt. 48, A71-A74 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-1-A71


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577(2001).
  2. S. Macrae, J. Schwiegerling, and R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230-S235 (2000).
  3. G. Artzner, “Aspherical wavefront measurements: Shack-Hartmann numerical and practical experiments,” Pure Appl. Opt. 7, 435-448 (1998). [CrossRef]
  4. J. Ares, T. Mancebo, and S. Bara, “Position and displacement sensing with Shack-Hartmann wave-front sensors,” Appl. Opt. 39, 1511-1520 (2000). [CrossRef]
  5. H. Hamam, “A direct technique for calculating the profile of aberration of the eye measured by a modified Hartmann-Shack apparatus,” Opt. Commun. 173, 23-26 (2000). [CrossRef]
  6. R. R. Rammage, D. R. Neal, and R. J. Copland, “Application of Shack-Hartmann wavefront sensing technology to transmissive optics metrology,” Proc. SPIE 4779, 161-172 (2002). [CrossRef]
  7. L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313-319(2003). [CrossRef]
  8. P. D. Pulaski, J. P. Roller, D. R. Neal, and K. Ratte, “Measurement of aberrations in microlenses using a Shack-Hartmann wavefront sensor,” Proc. SPIE 4767, 44-52 (2002). [CrossRef]
  9. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, Bruno M. Van Wonterghem, W. T. Whistler, S. E. Winters, and B. W. Woods, “Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540-4546 (2000). [CrossRef]
  10. Robert B. Own and Alex A. Zozulya, “Comparative study with double-exposure digital holographic interferometery and a Shack-Hartmann sensor to characterize transparent materials” Appl. Opt. 41,5891-5895 (2002). [CrossRef]
  11. M. Rocktaschel and H. J. Tiziani, “Limitations of Shack-Hartmann sensor for testing optical aspherics,” Opt. Laser Technol. 34, 631-637 (2002). [CrossRef]
  12. J. Primot and N. Guerineau, “Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715-5720(2000). [CrossRef]
  13. R. Grunwald, S. Huferath, M. Bock, U. Neumann, and S. Langer, “Angular tolerance of Shack-Hartmann wavefront sensors with microaxicons,” Opt. Lett. 32, 1533-1535 (2007). [CrossRef] [PubMed]
  14. L. P. Zhao, N. Bai, L. Xiang,, L. S.Ong, Z. P. Fang, A. K. Asundi, “Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor,” Appl. Opt. 45, 90-94 (2006). [CrossRef] [PubMed]
  15. A. Hein, “Investigation on the wavefront stability of wavefront sensors,” Master's thesis (Nanyang Technological University, Singapore, 2006).
  16. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523-526 (1991). [CrossRef] [PubMed]
  17. R. Piestun and J. Shamir, “Control of wave-front propagation with diffractive elements,” Opt. Lett. 19, 771-773(1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited