OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: 1886–1890

Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking

Yi Deng and Joshua W. Shaevitz  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. 1886-1890 (2009)
http://dx.doi.org/10.1364/AO.48.001886


View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many single-particle tracking and localization-based superresolution imaging techniques use the width of a single lateral fluorescence image to estimate a molecule’s axial position. This determination is often done by use of a calibration data set derived from a source adhered to a glass–water interface. However, for sources deeper in solution, aberrations will change the relationship between the image width and the axial position. We analyzed the depth-varying point spread function of a high numerical aperture objective near an index of refraction mismatch at the water–glass interface using an optical trap. In addition to the well-known focal shift, spherical aberrations cause up to 30% relative systematic error in axial position estimation. This effect is nonuniform in depth, and we find that, although molecules below the focal plane are correctly localized, molecules deeper than the focal plane are found to be lower than their actual positions.

© 2009 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(150.1488) Machine vision : Calibration

ToC Category:
Microscopy

History
Original Manuscript: October 27, 2008
Revised Manuscript: February 3, 2009
Manuscript Accepted: February 13, 2009
Published: March 25, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yi Deng and Joshua W. Shaevitz, "Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking," Appl. Opt. 48, 1886-1890 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-10-1886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105, 41-48(1987). [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782(1994). [CrossRef] [PubMed]
  4. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539-544 (2008). [CrossRef] [PubMed]
  5. S. W. Hell and E. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159-2166 (1992). [CrossRef]
  6. M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “15 m:3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. 195, 10-16 (1999). [CrossRef] [PubMed]
  7. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005). [CrossRef] [PubMed]
  8. J. W. Shaevitz, “Super-resolution for a 3D world,” Nat. Methods 5, 471-472 (2008). [CrossRef] [PubMed]
  9. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258-4272 (2006). [CrossRef] [PubMed]
  10. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645(2006). [CrossRef] [PubMed]
  11. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793-795 (2006). [CrossRef] [PubMed]
  12. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527-529 (2008). [CrossRef] [PubMed]
  13. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810-813 (2008). [CrossRef] [PubMed]
  14. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291-1300 (1994). [CrossRef] [PubMed]
  15. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  16. F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10503-10522(2005). [CrossRef] [PubMed]
  17. J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal multiphoton microscopy” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed., 3rd ed. (Springer, 2006), Chap. 29.
  18. C. J. R. Sheppard and P. Torok, “Effects of specimen refractive index on confocal imaging,” J. Microsc. 185, 366-374 (1997). [CrossRef]
  19. A. Diaspro, F. Federici, and M. Robello, “Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy,” Appl. Opt. 41, 685-690 (2002). [CrossRef] [PubMed]
  20. K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, “Measurement of the effective focal shift in an optical trap,” Opt. Lett. 30, 1318-1320 (2005). [CrossRef] [PubMed]
  21. J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. A 24, 2622-2627 (2007). [CrossRef]
  22. J. G. McNally, C. Preza, J. A. Conchello, and L. J. Thomas, “Artifacts in computational optical-sectioning microscopy,” J. Opt. Soc. Am. A 11, 1056-1067 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited