OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: D178–D186

Development of a transillumination infrared modality for differential vasoactive optical imaging

Sanhita S. Dixit, Hanyoup Kim, Brendan Visser, and Gregory W. Faris  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D178-D186 (2009)
http://dx.doi.org/10.1364/AO.48.00D178


View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the development and implementation of a new near infrared transillumination imaging modality for tissue imaging. Exogenous inhaled hyperoxic and hypercarbic gases are used as “vasoactive contrast agents” via the production of changes in concentration of the endogenous HbO 2 and Hb in blood. This vasoactive differential imaging method is employed to acquire data and for subsequent image analysis. Spectroscopic changes obtained from transillumination measurements on the palms of healthy volunteers demonstrate the functionality of the imaging platform. This modality is being developed to monitor suspect breast lesions in a clinical setting based on the hypothesis that the atypical tumor vascular environment will yield sufficient contrast for differential optical imaging between diseased and healthy tissue.

© 2009 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

History
Original Manuscript: September 3, 2008
Revised Manuscript: December 27, 2008
Manuscript Accepted: January 26, 2009
Published: February 27, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Sanhita S. Dixit, Hanyoup Kim, Brendan Visser, and Gregory W. Faris, "Development of a transillumination infrared modality for differential vasoactive optical imaging," Appl. Opt. 48, D178-D186 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-10-D178


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, “The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. Suppl. 39, 697-701 (1997). [CrossRef]
  2. P. D. Gatehouse, T. He, B. K. Puri, R. D. Thomas, D. Resnick, and G. M. Bydder, “Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones,” Br. J. Radiol. 77, 641-647 (2004). [CrossRef] [PubMed]
  3. I. G. Zubal, S. S. Spencer, K. Imam, J. Seibyl, E. O. Smith, G. Wisniewski, and P. B. Hoffer, “Difference images calculated from ictal and interictal technetium-99 m-HMPAO SPECT scans of epilepsy,” J. Nucl. Med. 36, 684-689 (1995). [PubMed]
  4. S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J Biomed. Opt. 11, 064016 (2006). [CrossRef]
  5. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007). [CrossRef] [PubMed]
  6. E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526-530 (2007). [CrossRef]
  7. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000). [CrossRef] [PubMed]
  8. C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005). [CrossRef] [PubMed]
  9. T. Noponen, D. Kicic, K. Kotilahti, T. Kajava, S. Kahkonen, I. Nissila, P. Merilainen, and T. Katila, “Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain,” Proc. SPIE 5693, 179-190 (2005). [CrossRef]
  10. G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722-10727 (2003). [CrossRef] [PubMed]
  11. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11, 361-370 (2008). [CrossRef] [PubMed]
  12. H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579-590 (1991). [CrossRef] [PubMed]
  13. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 59-66.
  14. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420-4425 (2001). [CrossRef] [PubMed]
  15. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and, physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534-540 (2004). [CrossRef] [PubMed]
  16. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006). [CrossRef] [PubMed]
  17. X. F. Cheng, J. M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, “Breast cancer detection by mapping hemoglobin concentration and oxygen saturation,” Appl. Opt. 42, 6412-6421 (2003). [CrossRef] [PubMed]
  18. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165-181 (2006). [CrossRef] [PubMed]
  19. S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005). [PubMed]
  20. Z. X. Guo, S. K. Wan, D. A. August, J. P. Ying, S. M. Dunn, and J. L. Semmlow, “Optical imaging of breast tumor through temporal log-slope difference mappings,” Comput. Biol. Med. 36, 209-223 (2006). [PubMed]
  21. E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004). [CrossRef] [PubMed]
  22. B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  23. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology (Oak Brook, Ill.) 237, 57-66 (2005).
  24. K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, “Dynamic imaging of tumor vasculature in rodents: carbogen-induced contrast enhancement,” Proc. SPIE 5312, 273-277 (2004). [CrossRef]
  25. D. M. Brizel, S. Lin, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, “The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation,” Br. J. Cancer 72, 1120-1124 (1995). [CrossRef] [PubMed]
  26. M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T. W. Secomb, “Arteriolar oxygenation in tumour and subcutaneous arterioles: Effects of inspired air oxygen content,” Br. J. Cancer Suppl. 27, S241-S246 (1996). [PubMed]
  27. J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998). [CrossRef] [PubMed]
  28. K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008). [CrossRef] [PubMed]
  29. S. Dixit, T. Le, K. Amin, C. Comstock, and G. Faris, “Cancer detection using infrared transillumination,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper JTuA47. [CrossRef]
  30. M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, “Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys., Suppl. 53, 1185-1191 (2002). [CrossRef]
  31. S. Prahl, “Optical absorption of hemoglobin,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  32. L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential path length and near-infrared quantification,” Phys. Med. Biol. 47, 1573-1589 (2002). [CrossRef] [PubMed]
  33. M. Essenpreis, C. E. Elwell, M. Cope, P. Vanderzee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418-425 (1993). [CrossRef] [PubMed]
  34. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998). [PubMed]
  35. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9-20 (1993). [PubMed]
  36. S. D. Milone, G. E. Newton, and J. D. Parker, “Hemodynamic and biochemical effects of 100% oxygen breathing in humans,” Can. J. Physiol. Pharmacol. 77, 124-130 (1999). [CrossRef] [PubMed]
  37. T. Q. Duong, C. Iadecola, and S. G. Kim, “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45, 61-70 (2001). [CrossRef] [PubMed]
  38. N. A. Watson, S. C. Beards, N. Altaf, A. Kassner, and A. Jackson, “The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography,” Eur. J. Anaesthesiol. 17, 152-159 (2000). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited