OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2236–2242

Sagnac-interferometer-based characterization of spatial light modulators

Jian Wei Tay, Michael A. Taylor, and Warwick P. Bowen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 12, pp. 2236-2242 (2009)
http://dx.doi.org/10.1364/AO.48.002236


View Full Text Article

Enhanced HTML    Acrobat PDF (710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for characterizing the phase response of spatial light modulators (SLMs) by using a Sagnac interferometer is proposed and demonstrated. The method represents an improvement over conventional diffraction-based or interferometric techniques by providing a simple and accurate phase measurement while taking advantage of the inherent phase stability of a Sagnac interferometer. As a demonstration, the phase response of a commercial liquid crystal on a silicon SLM is characterized and then linearized by using a programmable lookup table. The transverse phase profile over the SLM surface is also measured.

© 2009 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 1, 2008
Revised Manuscript: February 18, 2009
Manuscript Accepted: March 26, 2009
Published: April 14, 2009

Citation
Jian Wei Tay, Michael A. Taylor, and Warwick P. Bowen, "Sagnac-interferometer-based characterization of spatial light modulators," Appl. Opt. 48, 2236-2242 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-12-2236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24, 2940-2947 (2007). [CrossRef]
  2. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076-2081 (2008). [CrossRef] [PubMed]
  3. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133-5139 (1995). [CrossRef] [PubMed]
  4. J. A. Davis, K. O. Valadéz, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42, 2003-2008 (2003). [CrossRef] [PubMed]
  5. C.-S. Guo, Z.-Y. Rong, H.-T. Wang, Y. Wang, and L. Z. Cai, “Phase-shifting with computer-generated holograms written on a spatial light modulator,” Appl. Opt. 42, 6975-6979 (2003). [CrossRef] [PubMed]
  6. J. Davis, E. Carcole, and D. M. Cottrell, “Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator,” Appl. Opt. 35, 593-598 (1996). [CrossRef] [PubMed]
  7. H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Applications of SLMs for optical metrology,” Proc. SPIE 4457, 72-81 (2001). [CrossRef]
  8. Y. Takaki and H. Ohzu, “Liquid-crystal active lens: a reconfigurable lens employing a phase modulator,” Opt. Commun. 126, 123-134 (1996). [CrossRef]
  9. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Chromatic compensation of programmable Fresnel lenses,” Opt. Express 14, 6226-6242 (2006). [CrossRef] [PubMed]
  10. A. Márquez, C. Iemmi, J. C. Escalera, J. Campos, S. Ledesma, J. A. Davis, and M. J. Yzuel, “Amplitude apodizers encoded onto Fresnel lenses implemented on a phase-only spatial light modulator,” Appl. Opt. 40, 2316-2322 (2001). [CrossRef]
  11. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608-610 (1999). [CrossRef]
  12. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13, 3777-3786 (2005). [CrossRef] [PubMed]
  13. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432-3444(2005). [CrossRef] [PubMed]
  14. D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158-166 (2003). [CrossRef] [PubMed]
  15. D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53, 547-556 (2006). [CrossRef]
  16. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667-5679 (2007). [CrossRef] [PubMed]
  17. J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lõrincz, “Amplitude, phase, and hybrid ternary modulation modes of a twisted-nematic liquid-crystal display at ~400 nm,” Appl. Opt. 42, 3428-3434 (2003). [CrossRef] [PubMed]
  18. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt. 45, 7195-7204 (2006). [CrossRef] [PubMed]
  19. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400-6406 (2004). [CrossRef] [PubMed]
  20. T. Kiire, S. Nakadate, and M. Shibuya, “Phase-shifting interferometer based on changing the direction of linear polarization orthogonally,” Appl. Opt. 47, 3784-3788 (2008). [CrossRef] [PubMed]
  21. D. H. Hurley and O. B. Wright, “Detection of ultrafast phenomena by use of a modified Sagnac interferometer,” Opt. Lett. 24, 1305-1307 (1999). [CrossRef]
  22. T. Tachizaki, T. Muroya, O. Matsuda, Y. Sugawara, D. H. Hurley, and O. B. Wright, “Scanning ultrafast Sagnac interferometry for imaging two-dimensional surface wave propagation,” Rev. Sci. Instrum. 77, 043713 (2006). [CrossRef]
  23. H. Sasada and M. Okamoto, “Transverse-mode beam splitter of a light beam and its application to quantum cryptography,” Phys. Rev. A 68, 012323 (2003). [CrossRef]
  24. N. Treps, N. Grosse, W. P. Bowen, M. T. L. Hsu, A. Maître, C. Fabre, H.-A. Bachor, and P. K. Lam, “Nano-displacement measurements using spatially multimode squeezed light,” J. Opt. B 6, S664-S674 (2004). [CrossRef]
  25. V. Delaubert, N. Treps, C. C. Harb, P. K. Lam, and H.-A. Bachor, “Quantum measurements of spatial conjugate variables: displacement and tilt of a Gaussian beam,” Opt. Lett. 31, 1537-1539 (2006). [CrossRef] [PubMed]
  26. S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with sub-millisecond response,” Proc. SPIE 5106, 138-145 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited