OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2333–2339

Principle and analysis of a polarization imaging spectrometer

Tingkui Mu, Chunmin Zhang, and Baochang Zhao  »View Author Affiliations

Applied Optics, Vol. 48, Issue 12, pp. 2333-2339 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarization imaging spectrometer based on a modified Savart polariscope with a moving wedge prism is presented. The principle of the instrument is described, and the optical path difference as a function of the moving wedge prism’s moving displacement is calculated and analyzed. It employs a common-path configuration and is not sensitive to the nonuniform variation of moving speed and environmental vibrations. In comparison with the polarization imaging spectrometer based on the Savart polariscope, this spectrometer is a framing instrument rather than a pushbrooming device. Only the transmission of birefringent materials and detector sensitivity limit the available spectral range of such an instrument.

© 2009 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 13, 2008
Revised Manuscript: March 15, 2009
Manuscript Accepted: March 8, 2009
Published: April 14, 2009

Tingkui Mu, Chunmin Zhang, and Baochang Zhao, "Principle and analysis of a polarization imaging spectrometer," Appl. Opt. 48, 2333-2339 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972), pp. 19-45.
  2. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602-013603 (2005). [CrossRef]
  3. T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699-1705 (2009). [CrossRef]
  4. M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995). [CrossRef]
  5. T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269-273 (1984). [CrossRef] [PubMed]
  6. M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457-1462 (1991). [CrossRef]
  7. J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228-7230(1995). [CrossRef] [PubMed]
  8. W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensors and results,” Appl. Opt. 35, 2902-2909(1996). [CrossRef] [PubMed]
  9. C. Zhang, B. Xiangli, and B. Zhao, “Static Polarization Interference Imaging Spectrometer (SPIIS),” Proc. SPIE 4087, 957-961 (2000). [CrossRef]
  10. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002). [CrossRef]
  11. C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003). [CrossRef]
  12. C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815-817 (2004). [CrossRef]
  13. X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).
  14. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050-2056 (2008).
  15. T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984-1992 (2009). [CrossRef]
  16. M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15-29.
  17. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1980), p. 694.
  18. M. Hashimoto and S. Kawata, “Multichannel Fourier transform infrared spectrometer,” Appl. Opt. 31, 6096-6101 (1992). [CrossRef] [PubMed]
  19. G. Zhan, K. Oka, T. Ishigaki, and N. Baba, “Birefringent imaging spectrometer,” Appl. Opt. 41, 734-738 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited