OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2480–2484

High-quality photonic crystal heterostructures fabricated by a modified self-assembly method

G. Q. Liu, Z. S. Wang, Y. B. Liao, H. H. Hu, and Y. Chen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 13, pp. 2480-2484 (2009)
http://dx.doi.org/10.1364/AO.48.002480


View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-quality three-dimensional photonic crystal (PC) heterostructures were fabricated using the modified self-assembly method, and their structural and optical properties were analyzed. Results suggest that the optical quality of heterostructures formed by depositing bigger particles on small ones is superior to that of heterostructures formed by stacking smaller particles on big ones, due to the rough interface effects in the latter structure. The roughness of the interface in the latter structure can be largely improved by introducing a thin two-dimensional planar defect layer into the PCs, and significant progress in the quality of the heterostructures is achieved. The important role of the thin planar defect layer in the quality of the heterostructures was also verified by numerical simulations.

© 2009 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals
(250.6715) Optoelectronics : Switching

ToC Category:
Photonic Crystals

History
Original Manuscript: January 2, 2009
Revised Manuscript: March 31, 2009
Manuscript Accepted: April 7, 2009
Published: April 24, 2009

Citation
G. Q. Liu, Z. S. Wang, Y. B. Liao, H. H. Hu, and Y. Chen, "High-quality photonic crystal heterostructures fabricated by a modified self-assembly method," Appl. Opt. 48, 2480-2484 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-13-2480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photonics in certain disordered dielectric super lattices,” Phys. Rev. Lett. 58, 2486-2489(1987). [CrossRef] [PubMed]
  3. F. Monifi, A. Ghaffari, M. Djavid, and M. S. Abrishamian, “Three output port channel-drop filter based on photonic crystals,” Appl. Opt. 48, 804-809 (2009). [CrossRef] [PubMed]
  4. J. Fekete, Z. Várallyay, and R. Szipőcs, “Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light,” Appl. Opt. 47, 5330-5336 (2008). [CrossRef] [PubMed]
  5. Y. Li, C. Wang, N. Zhang, C.-Y. Wang, and Q. Xing, “Analysis and design of terahertz photonic crystal fibers by an effective-index method,” Appl. Opt. 45, 8462-8465 (2006). [CrossRef] [PubMed]
  6. O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8, 217-222 (2001). [CrossRef] [PubMed]
  7. H. Nakamura, S. Yoshimasa, K. Kyozo, I. Naoki, T. Yu, N. Yusui, O. Shunsuke, W. Yoshinori, I. Kuon, I. Hiroshi, and A. Kiyoshi, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004). [CrossRef] [PubMed]
  8. M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003). [CrossRef]
  9. X. Sun, P. Gu, W. Shen, X. Liu, Y. Wang, and Y. Zhang, “Design and fabrication of a novel reflection filter,” Appl. Opt. 46, 2899-2902 (2007). [CrossRef] [PubMed]
  10. X. Sun, W. Shen, X. Gai, P. Gu, X. Liu, and Y. Zhang, “Optical thin-film reflection filters based on the theory of photonic crystals,” Appl. Opt. 47, C35-C40 (2008). [CrossRef] [PubMed]
  11. M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, M. C. Olpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999). [CrossRef]
  12. R. D. Pradhan, I. I. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721-13726 (1996). [CrossRef]
  13. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132-2140 (1999). [CrossRef]
  14. S. Wong, V. Kitaev, and G. A. Ozin, “PC films: advances in universality and perfection,” J. Am. Chem. Soc. 12515589-15598 (2003). [CrossRef] [PubMed]
  15. Y. A. Vlasov, X. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  16. V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary PCs,” Adv. Mater. 15, 75-78 (2003). [CrossRef]
  17. Q. Yan, X. S. Zhao, and Z. Zhou, “Fabrication of PC heterostructures using a horizontal deposition method,” J. Cryst. Growth 288, 205-208 (2006). [CrossRef]
  18. Z. Zheng, X. Liu, Y. Luo, B. Cheng, D. Zhang, and Q. Meng, “Pressure controlled self-assembly of high quality three-dimensional colloidal photonic crystals,” Appl. Phys. Lett. 90, 051910 (2007). [CrossRef]
  19. K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of a two-dimensional cavity into a self-assembled PC,” Langmuir 19, 4465-4468(2003). [CrossRef]
  20. W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271-274 (2002). [CrossRef]
  21. N. Tétreault, H. Míguez, M. S. Yang, V. Kitaev, and G. A. Ozin, “Refractive index patterns in silicon inverted colloidal photonic crystals,” Adv. Mater. 15, 1167-1172 (2003). [CrossRef]
  22. E. Palacios-Lidón, J. E. Galisteo-López, B. H. Juárez, and C. López, “Engineered planar defects embedded in opals,” Adv. Mater. 16, 341-345 (2004). [CrossRef]
  23. R. Pozas, A. Mihi, M. Ocaña, and H. Míguez, “Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating,” Adv. Mater. 18, 1183-1187(2006). [CrossRef]
  24. N. Tétreault, A. Mihi, H. Míguez, I. Rodríguez, G. A. Ozin, F. Meseguer, and V. Kitaev, “Dielectric planar defects in colloidal photonic crystal films,” Adv. Mater. 16, 346-349 (2004). [CrossRef]
  25. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389-393 (2001). [CrossRef]
  26. R. Rengarajan, P. Jiang, D. C. Larrabee, V. L. Colvin, and D. M. Mittleman, “Collodial photonic superlattices,” Phys. Rev. B 64, 205103 (2001). [CrossRef]
  27. M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov, and C. S. Torres, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786-3792 (2003). [CrossRef]
  28. M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir-Blodgett method,” J. Mater. Chem. 12, 3268-3274 (2002). [CrossRef]
  29. M. Bardosova, M. E. Pemble, I. M. Povey, R. H. Tredgold, and D. E. Whitehead, “Enhanced Bragg reflection from size-matched heterostructure photonic crystal thin films prepared by the Langmuir-Blodgett method,” Appl. Phys. Lett. 89, 093116 (2006).
  30. H. L. Li and F. Marlow, “Controlled arrangement of colloidal crystal strips,” Chem. Mater. 17, 3809-3811 (2005). [CrossRef]
  31. N. Gaponik, A. Eychmüller, A. L. Rogach, V. G. Solovyev, C. M. Sotomayor Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029-1035 (2004). [CrossRef]
  32. R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys. 102, 056102 (2007). [CrossRef]
  33. P. Massé, G. Pouclet, and S. Ravaine, “Periodic distribution of planar defects in colloidal photonic crystals,” Adv. Mater. 20, 584-587 (2008). [CrossRef]
  34. G. Q. Liu, Y. B. Liao, Z. M. Liu, and Y. Chen, “Characteristic investigation of high quality three-dimensional photonic crystals fabricated by self-assembly: theory analysis, simulation and measurement,” J. Opt. A Pure Appl. Opt. 10, 115202 (2008).
  35. J. Y. Zhang, X. Y. Wang, and M. Xiao, “Modified spontaneous emission of CdTe quantum dots inside a photonic crystal,” Opt. Lett. 28, 1430-1432 (2003). [CrossRef] [PubMed]
  36. X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett. 83, 2518-2520 (2003). [CrossRef]
  37. Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86, 151102 (2005). [CrossRef]
  38. L. Wang, Q. Yan, and X. S. Zhao, “From planar defect in opal to planar defect in inverse opal,” Langmuir 22, 3481-3484 (2006). [CrossRef] [PubMed]
  39. Z. C. Zhou and X. S. Zhao, “Opal and inverse opal fabricated with a flow-controlled vertical deposition method,” Langmuir 21, 4717-4723 (2005). [CrossRef] [PubMed]
  40. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000). [CrossRef]
  41. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited