OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2505–2514

Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters

Siamak Abdollahi and Mohammad Kazem Moravvej-Farshi  »View Author Affiliations


Applied Optics, Vol. 48, Issue 13, pp. 2505-2514 (2009)
http://dx.doi.org/10.1364/AO.48.002505


View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I max = 1.5 × 10 10 W . cm 2 and T FWHM = 30 ps , propagating along a SOI NWG with an effective cross-sectional area of a eff = 0.15 μm 2 , is shown to be Δ λ s 8 pm . We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.7370) Optical devices : Waveguides
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 27, 2009
Revised Manuscript: April 6, 2009
Manuscript Accepted: April 7, 2009
Published: April 27, 2009

Citation
Siamak Abdollahi and Mohammad Kazem Moravvej-Farshi, "Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters," Appl. Opt. 48, 2505-2514 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-13-2505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524-5534 (2006). [CrossRef] [PubMed]
  2. N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides,” J. Lightwave Technol. 25, 2495-2501(2007). [CrossRef]
  3. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses,” Opt. Express 14, 8336-8346(2006). [CrossRef] [PubMed]
  4. X. Chen, N. C. Panoiu, I. Hsieh, J. I. Dadap, and R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617-2619 (2006). [CrossRef]
  5. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux , S. Beckx, D. Taillaert, B. Luyssaert, J.Van Campenhout, P. Bientsmann, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401-413 (2005). [CrossRef]
  6. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891-896 (2006). [CrossRef]
  7. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721-11726(2006). [CrossRef] [PubMed]
  8. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171-174 (2006). [CrossRef]
  9. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  10. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross absorption modulation in silicon wire waveguides,” Opt. Express 13, 7298-7303 (2005). [CrossRef] [PubMed]
  11. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976-5990 (2007). [CrossRef] [PubMed]
  12. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713-3718 (2004). [CrossRef] [PubMed]
  13. G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett. 66, 3570-3572 (1995). [CrossRef]
  14. S. Xiao, M. H. Khan, S. Hao, and Q. Minghao, “Two-photon absorption induced thermal-optic effect in high-Qsilicon microring resonators,” in Proceedings of the 20th Annual Meeting of the IEEE, LEOS 2007 (IEEE, 2007), pp. 890-891.
  15. A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists (CRC Press, 2002).
  16. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341-343 (2006). [CrossRef] [PubMed]
  17. K. Biwonjo, S. Sujecki, A. Vukovic, T. M. Benson, and P. Sewell, “Thermal models for silicon-on-insulator-based optical circuits,” Opt. Appl. 34, 149-161 (2004).
  18. G. Darvish, M. K. Moravvej-Farshi, A. Zarifkar, and K. Saghafi, “Narrowband optical filters suitable for various applications in optical communications,” Appl Opt. 47, 5140-5148 (2008). [CrossRef] [PubMed]
  19. S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520-10532 (2007). [CrossRef] [PubMed]
  20. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides, variational approach and its advantages,” Opt. Commun. 281, 5889-5893 (2008). [CrossRef]
  21. R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249-R271 (2007). [CrossRef]
  22. X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160-170 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited