OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2595–2599

Confocal light scattering spectroscopic imaging system for in situ tissue characterization

Peter Huang, Martin Hunter, and Irene Georgakoudi  »View Author Affiliations


Applied Optics, Vol. 48, Issue 13, pp. 2595-2599 (2009)
http://dx.doi.org/10.1364/AO.48.002595


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design and construction of a confocal light scattering spectroscopic imaging system aimed ultimately to conduct depth-resolved characterization of biological tissues. The confocal sectioning ability of the system is demonstrated using a two-layer sample consisting of a 200 μm thick cancer cell layer on top of a scattering layer doped with a green absorber. The measurement results demonstrate that distinct light scattering signals can be isolated from each layer with an axial and a lateral resolution of 30 and 27 μm , respectively. Such a system is expected to have significant applications in the areas of tissue engineering and disease diagnostics and monitoring.

© 2009 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(180.1790) Microscopy : Confocal microscopy
(290.1350) Scattering : Backscattering
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 14, 2008
Revised Manuscript: March 28, 2009
Manuscript Accepted: April 3, 2009
Published: April 29, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Peter Huang, Martin Hunter, and Irene Georgakoudi, "Confocal light scattering spectroscopic imaging system for in situ tissue characterization," Appl. Opt. 48, 2595-2599 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-13-2595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Munger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122, 363-371 (2008). [CrossRef]
  3. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887-893 (2001). [CrossRef]
  4. G. Schuele, E. Vitkin, P. Huie, C. O'Connell-Rodwell, D. Palanker, and L. T. Perelman, “Optical spectroscopy noninvasively monitors response of organelles to cellular stress,” J. Biomed. Opt. 10, 051404 (2005). [CrossRef] [PubMed]
  5. C.-C. Yu, C. Lau, J. W. Tunnell, M. Hunter, M. Kalashnikov, C. Fang-Yen, S. F. Fulghum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Assessing epithelial cell nuclear morphology by using azimuthal light scattering spectroscopy,” Opt. Lett. 31, 3119-3121 (2006). [CrossRef] [PubMed]
  6. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002). [CrossRef] [PubMed]
  7. V. Ost, J. Neukammer, and H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32, 191-197(1998). [CrossRef] [PubMed]
  8. M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, “Microscope-based static light-scattering instrument,” Opt. Lett. 26, 890-892 (2001). [CrossRef]
  9. W. J. Cottrell, J. D. Wilson, and T. H. Foster, “Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy,” Opt. Lett. 32, 2348-2350 (2007). [CrossRef] [PubMed]
  10. Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett. 30, 2445-2447(2005). [CrossRef] [PubMed]
  11. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K.-H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104, 17255-17260 (2007). [CrossRef] [PubMed]
  12. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, “Depth-resolved low-coherence enhanced backscattering,” Opt. Lett. 30, 741-743 (2005). [CrossRef] [PubMed]
  13. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999). [CrossRef]
  14. K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited