OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2619–2624

Formation and characterization of a near-stoichiometric LiNbO 3 waveguide by MeV oxygen implantation

Lei Wang and Qing-Ming Lu  »View Author Affiliations

Applied Optics, Vol. 48, Issue 14, pp. 2619-2624 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and optical properties of planar and channel waveguides on z-cut near- stoichiometric LiNbO 3 crystal formed by 6.0 MeV O 3 + implantation at a dose of 5 × 10 14 ions / cm 2 . The properties of the planar waveguide are characterized by use of prism coupling and the reflectivity calculation method. It is found that the effective refractive indices of the transverse magnetic modes increase but the transverse electric ones decrease when an appropriate heat annealing treatment is performed. We also find that only transverse magnetic polarized light could be guided in this waveguide effectively, although the dark mode could be detected in both the transverse electric and the transverse magnetic directions.

© 2009 Optical Society of America

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: January 2, 2009
Revised Manuscript: March 30, 2009
Manuscript Accepted: April 20, 2009
Published: May 1, 2009

Lei Wang and Qing-Ming Lu, "Formation and characterization of a near-stoichiometric LiNbO3 waveguide by MeV oxygen implantation," Appl. Opt. 48, 2619-2624 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253-283 (2004). [CrossRef]
  2. A. M. Prokhorov and Yu. S. Kuz'minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).
  3. C. S. Tsai, “Integrated acousto-optic circuits and applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 529-533(1992). [CrossRef] [PubMed]
  4. B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997). [CrossRef]
  5. F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998). [CrossRef]
  6. F, Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523-1542 (2007). [CrossRef]
  7. P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001). [CrossRef]
  8. D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996). [CrossRef]
  9. L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004). [CrossRef]
  10. A. Boudrioua, B. Vincent, R. Kremer, P. Moretti, and S. Tascu, “Linear and nonlinear optical properties of implanted Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 22, 2192-2199 (2005). [CrossRef]
  11. D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20, 1256-1258 (1995). [CrossRef] [PubMed]
  12. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004). [CrossRef]
  13. G. V. Vazquez, J. Richards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express 11, 1291-1296 (2003). [CrossRef] [PubMed]
  14. M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005). [CrossRef]
  15. S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004). [CrossRef] [PubMed]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002). [CrossRef]
  17. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001). [CrossRef]
  18. X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005). [CrossRef]
  19. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” CRC Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008). [CrossRef]
  20. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15, 151-155 (1976). [CrossRef] [PubMed]
  21. D. Fluck, D. H. Jundt, and P. Gunter, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023-6031(1993). [CrossRef]
  22. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-143(1996). [CrossRef]
  23. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 498-502 (2000). [CrossRef]
  24. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001). [CrossRef]
  25. Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007). [CrossRef]
  26. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101, 094109 (2007). [CrossRef]
  27. J. F. Ziegler, Computer Code SRIM, <http://www.srim.org>.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited