OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2649–2654

Investigation of relaxor PLZT thin films as resonant optical waveguides and the temperature dependence of their refractive index

Ribal Georges Sabat and Paul Rochon  »View Author Affiliations

Applied Optics, Vol. 48, Issue 14, pp. 2649-2654 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Relaxor lead lanthanum zirconate titanate (PLZT) thin films, with compositions of ( 7 / 65 / 35 ), ( 8 / 65 / 35 ), and ( 9 / 65 / 35 ), have been investigated as optical waveguides. Resonant structures were observed in the reflected light beam that passes through these thin films after coupling with a laser-inscribed azo polymer surface relief diffraction grating. The temperature was then varied on the PLZT thin films between 20 and 70 ° C , and a shift in the above resonance peaks was observed that is due to a change in the refractive index of the samples. The temperature dependence of the refractive index of the tested PLZT thin films was subsequently plotted and was found to decrease linearly with an increase in temperature at different rates for all the thin-film compositions tested.

© 2009 Optical Society of America

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.2785) Thin films : Guided wave applications
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Thin Films

Original Manuscript: January 27, 2009
Revised Manuscript: April 1, 2009
Manuscript Accepted: April 3, 2009
Published: May 4, 2009

Ribal Georges Sabat and Paul Rochon, "Investigation of relaxor PLZT thin films as resonant optical waveguides and the temperature dependence of their refractive index," Appl. Opt. 48, 2649-2654 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ishida, H. Matsunami, and T. Tanaka, “Preparation and properties of ferroelectric PLZT thin films by rf sputtering,” J. Appl. Phys. 48, 951-953 (1977). [CrossRef]
  2. M. Ishida, H. Matsunami, and T. Tanaka, “Electro-optic effects of PLZT thin films,” Appl. Phys. Lett. 31, 433-434 (1977). [CrossRef]
  3. T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki, and K. Wasa, “PLZT thin-film waveguides,” Appl. Opt. 23, 2187-2191 (1984). [CrossRef] [PubMed]
  4. S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991). [CrossRef] [PubMed]
  5. H. Adachi and K. Wasa, “Sputtering preparation of ferroelectric PLZT thin films and their optical applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 645-655(1991). [CrossRef] [PubMed]
  6. F. Wang, K. K. Li, V. Fuflyigin, H. Jiang, J. Zhao, P. Norris, and D. Goldstein, “Thin ferroelectric interferometer for spatial light modulations,” Appl. Opt. 37, 7490-7495 (1998). [CrossRef]
  7. G. H. Jin, Y. K. Zou, V. Fuflyigin, S. W. Liu, Y. L. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightwave Technol. 18, 807-812(2000). [CrossRef]
  8. K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005). [CrossRef]
  9. W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007). [CrossRef]
  10. V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999). [CrossRef]
  11. R. Johannes and W. Haas, “Temperature dependence of the refractive index nc in SbSI through the ferroelectric-paraelectric transition,” Appl. Opt. 6, 1059-1061 (1967). [CrossRef] [PubMed]
  12. W. Jantsch, “Anomalies of the refractive index and the optical energy gap of ferroelectric Pb1−xGexTe,” Z. Phys. B 40, 193-198 (1980). [CrossRef]
  13. V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981). [CrossRef]
  14. M.-S Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44-49(1996). [CrossRef]
  15. P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).
  16. D. Marcuse, Geometrical Optics Treatment of Slab Waveguides (Academic, 1991), pp. 3-7.
  17. C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, 1994).
  18. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38, 3714-3719 (1999). [CrossRef]
  19. G. H. Haertling, “Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system,” J. Am. Ceram. Soc. 54, 303-309 (1971). [CrossRef]
  20. G. H. Haertling and C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1-11 (1971). [CrossRef]
  21. R. G. Sabat and P. Rochon, “Interferometric determination of the temperature dependence of the refractive index of relaxor PLZT ceramics under DC bias,” Opt. Mater. 10.1016/j.optmat.2009.02.001 (2009). [CrossRef]
  22. E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006). [CrossRef]
  23. R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104, 054115 (2008). [CrossRef]
  24. Q. Tan and D. Viehland, “ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: induced relaxor behavior and domain breakdown in soft ferroelectrics,” Phys. Rev. B 53, 14103-14111 (1996). [CrossRef]
  25. V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited