OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2752–2759

Échelle spectrograph calibration with a frequency comb based on a harmonically mode-locked fiber laser: a proposal

J. J. McFerran  »View Author Affiliations

Applied Optics, Vol. 48, Issue 14, pp. 2752-2759 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Details for constructing an astronomical frequency comb suitable as a wavelength reference for échelle spectrographs associated with optical telescopes are outlined. The source laser for the frequency comb is a harmonically mode-locked fiber laser with a central wavelength of 1.56 μm . The means of producing a repetition rate greater than 7 GHz and a peak optical power of 8 kW are discussed. Conversion of the oscillator light into the visible can occur through a two-step process of (i) nonlinear conversion in periodically poled lithium niobate and (ii) spectral broadening in photonic crystal fiber. While not necessarily octave spanning in spectral range to permit the use of an f -to- 2 f interferometer for offset frequency control, the frequency comb can be granted accuracy by linking the mode spacing and a comb tooth to separate frequency references. The design avoids the use of a Fabry–Perot cavity to increase the mode spacing of the frequency comb; however, the level of supermode suppression and sideband asymmetry in the fiber oscillator and in the subsequent frequency conversion stages are aspects that need to be experimentally tested.

© 2009 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.0250) Optical devices : Optoelectronics

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 17, 2009
Revised Manuscript: April 14, 2009
Manuscript Accepted: April 17, 2009
Published: May 7, 2009

J. J. McFerran, "Échelle spectrograph calibration with a frequency comb based on a harmonically mode-locked fiber laser: a proposal," Appl. Opt. 48, 2752-2759 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-H. Li, A. Benedick, P. Fendel, A. Glenday, F. Kartner, D. Phillips, D. Sasselov, A. Szentgyorgyi, and R. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1,” Nature 452, 610-612 (2008). [CrossRef] [PubMed]
  2. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839-847 (2007). [CrossRef]
  3. S. Osterman, S. A. Diddams, B. M. C. Froning, L. Hollberg, P. MacQueen, V. Mbele, and A. Weiner, “A proposed laser frequency comb based wavelength reference for high resolution spectroscopy,” Proc. SPIE 6693, 66931G1(2007).
  4. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D'Odorico, M. Murphy, T. Kentischer, W. Schmidt, and U. Th, “Laser frequency combs for astronomical observations,” Science 321, 1335-1337 (2008). [CrossRef] [PubMed]
  5. J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, F. Pepe, G. Avila, P. Bonifacio, F. Bouchy, H. Dekker, B. Delabre, S. D'Odorico, V. D'Odorico, S. Levshakov, C. Lovis, M. Mayor, P. Molaro, L. Moscardini, M. T. Murphy, D. Queloz, P. Shaver, S. Udry, T. Wiklind, and S. Zucker, “Cosmic dynamics in the era of extremely large telescopes,” Mon. Not. R. Astron. Soc. 386, 1192-1218 (2008). [CrossRef]
  6. C. Lovis, F. Pepe, F. Bouchy, G. L. Curto, M. Mayor, L. Pasquini, D. Queloz, G. Rupprecht, S. Udry, and S. Zucker, “The exoplanet hunter HARPS: unequalled accuracy and perspectives toward 1 cm s−1 precision,” Proc. SPIE 6269, 62690P(2006). [CrossRef]
  7. J.-P. De Cuyper and H. Hensberge, “Wavelength calibration at moderately high resolution,” Astron. Astrophys. Suppl. Ser. 128, 409-416 (1998). [CrossRef]
  8. C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” Astron. Astrophys. 468, 1115-1121(2007). [CrossRef]
  9. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. L. Coq, Q. Q. C. W. Oates, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photon. 1, 283-287 (2007). [CrossRef]
  10. L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43, 139-146 (2007). [CrossRef]
  11. M. Mayor, S. Udry, C. Lovis, F. Pepe, D. Queloz, W. Benz, J.-L. Bertaux, F. Bouchy, C. Mordasini, and D. Segransan, “The HARPS search for southern extrasolar planets,” Astron. Astrophys. 493, 639-644 (2009). [CrossRef]
  12. R. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultrashort pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409-418 (2000). [CrossRef]
  13. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57-66 (2008). [CrossRef]
  14. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with sub-hertz relative linewidths,” Opt. Lett. 31, 3046-3048 (2006). [CrossRef] [PubMed]
  15. F. Rana, H. L. T. Lee, R. J. Ram, M. E. Grein, L. A. Jiang, E. P. Ippen, and H. A. Haus, “Characterization of the noise and correlations in harmonically mode-locked lasers,” J. Opt. Soc. Am. B 19, 2609-2621 (2002). [CrossRef]
  16. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generation in silica suspended core fibers,” Opt. Express 16, 19629-19642 (2008). [CrossRef] [PubMed]
  17. A. Bartels, D. Heinecke, and S. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33, 1905-1907 (2008). [CrossRef] [PubMed]
  18. D. Panasenko, P. Polynkin, A. Polynkin, J. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1 W average power and GHz repetition rates,” IEEE Photonics Technol. Lett. 18, 853-855 (2006). [CrossRef]
  19. A. Bartels, R. Gebs, M. S. Kirchner, and S. A. Diddams, “Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser,” Opt. Lett. 32, 2553-2555 (2007). [CrossRef] [PubMed]
  20. C. Leburn, A. Lagatsky, C. Brown, and W. Sibbett, “Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate,” Electron. Lett. 40, 805-807 (2004). [CrossRef]
  21. S. Zhou, D. Ouzounov, and F. Wise, “Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz,” Opt. Lett. 31, 1041-1043 (2006). [CrossRef] [PubMed]
  22. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2 GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996-998 (1999). [CrossRef]
  23. B. Collings, K. Bergman, and W. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23, 123-125 (1998). [CrossRef]
  24. T. Wilken, T. Hänsch, R. Holzwarth, P. Adel, and M. Mei, “Low phase noise 250 MHz repetition rate fiber fs laser for frequency comb applications,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), pp. 572-573.
  25. K. Abedin, J. Gopinath, L. Jiang, M. Grein, H. Haus, and E. Ippen, “Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser,” Opt. Lett. 27, 1758-1760 (2002). [CrossRef]
  26. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32, 2870-2872 (2007). [CrossRef] [PubMed]
  27. E. Rafailov, M. Cataluna, W. Sibbett, N. Il'inskaya, Y. Zadiranov, A. Zhukov, V. Ustinov, D. Livshits, A. Kovsh, and N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005). [CrossRef]
  28. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86, 219-227 (2007). [CrossRef]
  29. J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15, 13155-13166 (2007). [CrossRef] [PubMed]
  30. K. Tamura, H. A. Haus, E. P. Ippen, and L. E. Nelson, “77 fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  31. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5 GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17, 750-752 (2005). [CrossRef]
  32. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experimen,” IEEE J. Quantum Electron. 31, 591-595 (1995). [CrossRef]
  33. M. Arbore, M. Fejer, M. Fermann, A. Haribaran, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13-15 (1997). [CrossRef] [PubMed]
  34. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43-45 (2002). [CrossRef]
  35. I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, and M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13, 6490-6496 (2005). [CrossRef] [PubMed]
  36. K. Moutzouris, F. Sotier, F. Adler, and A. Leitenstorfer, “Highly efficient second, third and fourth harmonic generation from a two- branch femtosecond erbium fiber source,” Opt. Express 14, 1905-1912 (2006). [CrossRef] [PubMed]
  37. F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Suguira, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28, 1516-1518 (2003). [CrossRef] [PubMed]
  38. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478-2480 (2007). [CrossRef] [PubMed]
  39. A. Ortigosa-Blanch, J. Knight, and P. Russell, “Pulse breaking and supercontinuum generation with 200 fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567-2572(2002). [CrossRef]
  40. A. Kudlinski, A. George, J. Knight, J. Travers, A. Rulkov, S. Popov, and J. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715-5722 (2006). [CrossRef] [PubMed]
  41. J. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749-1757 (1998). [CrossRef]
  42. Z. Zhang, L. Zhan, X. Yang, S. Luo, and Y. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4, 592-596 (2007). [CrossRef]
  43. Y. Deng and W. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030 nm,” Opt. Lett. 29, 2121-2123 (2004). [CrossRef] [PubMed]
  44. B. Ortaç, A. Hideur, and M. Brunel, “Passive harmonic mode locking with a high-power ytterbium-doped double-clad fiber laser,” Opt. Lett. 29, 1995-1997 (2004). [CrossRef] [PubMed]
  45. E. Benkler, H. Telle, A. Zach, and F. Tauser, “Circumvention of noise contributions in fiber laser based frequency combs,” Opt. Express 13, 5662-5668 (2005). [CrossRef] [PubMed]
  46. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24, 1756-1770 (2007). [CrossRef]
  47. A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavac, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109-120 (2006). [CrossRef]
  48. S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354-360 (2007). [CrossRef]
  49. J. Ye, T. H. Yoon, J. Hall, A. Madej, J. Bernard, K. Siemsen, L. Marmet, J.-M. Chartier, and A. Chartier, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797-3800(2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited