OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 15 — May. 20, 2009
  • pp: 2811–2820

Fresnel Interferometric Imager: ground-based prototype

Denis Serre, Paul Deba, and Laurent Koechlin  »View Author Affiliations

Applied Optics, Vol. 48, Issue 15, pp. 2811-2820 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Fresnel Interferometric Imager is a space-based astronomical telescope project yielding milli- arcsecond angular resolution and high contrast images with loose manufacturing constraints. This optical concept involves diffractive focusing and formation flying: a first “primary optics” space module holds a large binary Fresnel array, and a second “focal module” holds optical elements and focal instruments that allow for chromatic dispersion correction. We have designed a reduced-size Fresnel Interferometric Imager prototype and made optical tests in our laboratory in order to validate the concept for future space missions. The primary module of this prototype consists of a square, 8 cm side, 23 m focal length Fresnel array. The focal module is composed of a diaphragmed small telescope used as “field lens,” a small cophased diverging Fresnel zone lens that cancels the dispersion, and a detector. An additional module collimates the artificial targets of various shapes, sizes, and dynamic ranges to be imaged. We describe the experimental setup, different designs of the primary Fresnel array, and the cophased Fresnel zone lens that achieves rigorous chromatic correction. We give quantitative measurements of the diffraction limited performances and dynamic range on double sources. The tests have been performed in the visible domain, λ = 400 700 nm . In addition, we present computer simulations of the prototype optics based on Fresnel propagation that corroborate the optical tests. This numerical tool has been used to simulate the large aperture Fresnel arrays that could be sent to space with diameters of 3 to 30 m , foreseen to operate from Lyman α ( 121 nm ) to mid IR ( 25 μm ).

© 2009 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:

Original Manuscript: December 8, 2008
Revised Manuscript: February 26, 2009
Manuscript Accepted: March 3, 2009
Published: May 11, 2009

Denis Serre, Paul Deba, and Laurent Koechlin, "Fresnel Interferometric Imager: ground-based prototype," Appl. Opt. 48, 2811-2820 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Baez, “A self-supporting metal Fresnel zone-plate to focus extreme ultra-violet and soft x-rays,” Nature 186, 958 (1960). [CrossRef]
  2. A. Baez, “Fresnel zone plate for optical image formation using extreme ultraviolet and soft X radiation,” J. Opt. Soc. Am. 51, 405-412 (1961). [CrossRef]
  3. Y. M. Chesnokov, “A space-based very high angular resolution telescope,” Space Bulletin 1(2), 18-21 (1993).
  4. Roderick A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38, 4198-4212 (1999). [CrossRef]
  5. D. Massonnet, “Un nouveau type de télescope spatial-,” Brevet CNES-Ref. 03.13403 (2003).
  6. L. Koechlin, D. Serre, and P. Duchon, “High resolution imaging with Fresnel interferometric arrays: suitability for exoplanet detection,” Astron. Astrophys. 443, 709-720(2005). [CrossRef]
  7. D. Faklis and G. M. Morris, “Broadband imaging with holographic lenses,” Opt. Eng. 28, 592-598 (1989).
  8. L. Koechlin, D. Serre, P. Deba, R. Pelló, C. Peillon, P. Duchon, A. I. Gomez de Castro, M. Karovska, J.-M. Désert, D. Ehrenreich, G. Hebrard, A. Lecavelier Des Etangs, R. Ferlet, D. Sing, and A. Vidal-Madjar, “The fresnel interferometric imager,” Exper. Astron. 23, 379-402(2009). [CrossRef]
  9. D. Serre, L. Koechlin, and P. Deba, “Fresnel interferometric arrays for space-based imaging: testbed results,” Proc. SPIE 6687, 66870I (2007). [CrossRef]
  10. P. Nisenson and C. Papaliolios, “Detection of Earth-like planets using apodized telescopes,” Astrophys. J. 548, L201-L205 (2001). [CrossRef]
  11. O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys. 404, 379-387 (2003). [CrossRef]
  12. J. L. Soret, “Sur les phénomènes de diffraction produits par les réseaux circulaires,” Arch. Sci. Phys. Nat. 52, 320-337(1875).
  13. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001). [CrossRef] [PubMed]
  14. L. Schupmann, Die Medial-Fernrohre. Eine neue Konstruktion für grosse astronomische Instrumente (B. G. Teubner, 1899).
  15. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462-2468 (1995). [CrossRef] [PubMed]
  16. G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605-608(1989).
  17. E. Hasman, N. Davidson, and A. A. Friesem, “Efficient multilevel phase holograms for CO2 lasers,” Opt. Lett. 16, 423-425 (1991). [CrossRef] [PubMed]
  18. U. Levy, D. Mendlovic, and E. Marom, “Efficiency analysis of diffractive lenses,” J. Opt. Soc. Am. A 18, 86-93 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited