OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 15 — May. 20, 2009
  • pp: 2821–2835

How small can a microring resonator be and yet be polarization independent?

Thomas Yong Long Ang, Soon Thor Lim, Shuh Ying Lee, Ching Eng Png, and Mee Koy Chin  »View Author Affiliations


Applied Optics, Vol. 48, Issue 15, pp. 2821-2835 (2009)
http://dx.doi.org/10.1364/AO.48.002821


View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There has been a recent trend to reduce the size of photonic waveguide devices to enable high-density integration in silicon photonic integrated circuits. However, this miniaturization tends to result in increased polarization dependency. Particularly challenging is designing devices based on ring waveguides with small radii, which exacerbates the polarization sensitivity. For these microring resonators, a legitimate question is then: Is it possible to simultaneously maintain the conditions of single-mode and structural polarization independence while shrinking the size of both the bend radius and the waveguide cross section, and, if so, how small can the ring resonator be? We demonstrate theoretically the feasibility of achieving this via deeply etched submicrometer silicon-on-insulator rib waveguides, and we show that, for a given cladding and core thickness, the radius of a polarization independent microring resonator can be as small as 3 μm , being limited chiefly by the residual birefringence of the resonator cavity and the bend losses.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: November 18, 2008
Revised Manuscript: March 6, 2009
Manuscript Accepted: April 7, 2009
Published: May 11, 2009

Citation
Thomas Yong Long Ang, Soon Thor Lim, Shuh Ying Lee, Ching Eng Png, and Mee Koy Chin, "How small can a microring resonator be and yet be polarization independent?," Appl. Opt. 48, 2821-2835 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-15-2821


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rostami and G. Rostami, “All-optical implementation of tunable low-pass, high-pass, and bandpass optical filters using ring resonators,” J. Lightwave Technol. 23, 446-460 (2005). [CrossRef]
  2. S.-Y. Cho and R. Soref, “Interferometric microring-resonant 2×2 optical switches,” Opt. Express 16, 13304-13314 (2008). [CrossRef] [PubMed]
  3. Y. Li, L. Zhang, M. Song, B. Zhang, J.-Y. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16, 13342-13348 (2008). [CrossRef] [PubMed]
  4. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567-1578 (2007). [CrossRef] [PubMed]
  5. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872-4880 (2008). [CrossRef] [PubMed]
  6. M. K. Chin, “Polarization dependence in waveguide-coupled micro-resonators,” Opt. Express 11, 1724-1730 (2003). [CrossRef] [PubMed]
  7. M. K. Chin, C. L. Xu, and W. P. Huang, “Theoretical approach to a polarization insensitive single-mode microring resonator,” Opt. Express 12, 3245-3250 (2004). [CrossRef] [PubMed]
  8. W. R. Headley, G. T. Reed, A. Liu, M. Paniccia, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguide on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523-5525 (2004). [CrossRef]
  9. I. Kiyat, A. Aydinli, and N. Dagli, “Polarization characteristics of compact SOI rib waveguide racetrack resonators,” IEEE Photon. Technol. Lett. 17, 2098-2100 (2005). [CrossRef]
  10. D.-X. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photon. Technol. Lett. 18, 343-345 (2006). [CrossRef]
  11. S. P. Chan, C. E. Png, S. T. Lim, V. M. N. Passaro, and G. T. Reed, “Single mode and polarization independent SOI waveguides with small cross section,” J. Lightwave Technol. 23, 2103-2111 (2005). [CrossRef]
  12. S. T. Lim, Y. L. Ang, C. E. Png, and Y. A. Ong, “Single-mode, polarization independent submicron waveguides using geometrical adjustment,” Opt. Express 15, 11061-11072 (2007). [CrossRef] [PubMed]
  13. W. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightwave Technol. 23, 1308-1318 (2005). [CrossRef]
  14. K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO waveguides by roughness reduction,” Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  15. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  16. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  17. Apollo Photonic Solutions Suite (APSS2) (Apollo Photonics, Hamilton, Canada).
  18. “Beamprop” and “FullWave,” Rsoft Design Group, Inc., Ossining, New York.
  19. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433-1446 (1998). [CrossRef]
  20. M. K. Smit, E. C. M. Pennings, and H. Blok, “A normalized approach to the design of low-loss optical waveguide bends,” J. Lightwave Technol. 11, 1737-1742 (1993). [CrossRef]
  21. D. Dai and S. He, “Analysis of characteristics of bent rib waveguides,” J. Opt. Soc. Am. A 21, 113-121 (2004). [CrossRef]
  22. B. E. Little and S. T. Chu, “Theory of polarization rotation and conversion in vertically coupled microresonators,” IEEE Photon. Technol. Lett. 12, 401-403 (2000). [CrossRef]
  23. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23, 432-445 (2005). [CrossRef]
  24. F. Morichetti, A. Melloni, and M. Martinelli, “Effects of polarization rotation in optical ring-resonator-based devices,” J. Lightwave Technol. 24, 573-585 (2006). [CrossRef]
  25. W. R. Headley III, “Optical ring resonators in silicon-on-insulator,” Ph.D. dissertation (University of Surrey, 2005).
  26. A. Yariv, “Universal relations for coupling of optical power between micro-resonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998), p. 548.
  28. M. Galarza, J. Moreno, M. Lopez-Amo, I. Christiaens, D. Van Thourhout, and R. Baets, “Simple low-loss waveguide bends using ARROW effect,” Appl. Phys. B 80, 745-748(2005). [CrossRef]
  29. E. Cassan, L. Vivien, and S. Laval, “Polarization-independent 90° turns in single-mode micro-waveguides on silicon-on-insulator wafers for telecommunication wavelengths,” Opt. Commun. 235, 83-88 (2004). [CrossRef]
  30. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004-1009 (1994). [CrossRef]
  31. W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” presented at Asia-Pacific Optical Communications Conference (APOC), Hangzhou, China, 26-30 October 2008 (invited).
  32. Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett. 19, 759-761 (2007). [CrossRef]
  33. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005). [CrossRef]
  34. S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, A. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order microring resonators,” Conference on Lasers and Electro-Optics (IEEE, 2004), paper PDP9
  35. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol. 20, 1525-1529 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited