OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 15 — May. 20, 2009
  • pp: 2847–2852

Modal characteristics of coupled metallic nanoscale rectangular apertures

Triranjita Srivastava and Arun Kumar  »View Author Affiliations

Applied Optics, Vol. 48, Issue 15, pp. 2847-2852 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the modal characteristics of coupled metallic nanoscale rectangular apertures using a simple and accurate separation of variables method, recently proposed by us for a single aperture [ Opt. Lett. 33, 333 (2008)]. The study shows that the coupling between the antisymmetric surface plasmon polariton (SPP) modes of the two rectangular apertures results in a coupled SPP mode with very large propagation length, larger than 1 mm at the wavelength of 0.633 μm , provided the aperture size and the separation are sufficiently large. The effective indices and the propagation lengths of various coupled SPP modes are presented.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: February 23, 2009
Revised Manuscript: April 13, 2009
Manuscript Accepted: April 15, 2009
Published: May 11, 2009

Triranjita Srivastava and Arun Kumar, "Modal characteristics of coupled metallic nanoscale rectangular apertures," Appl. Opt. 48, 2847-2852 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61, 44-50 (2008). [CrossRef]
  2. M. L. Borngersma, R. Zia, and J. A. Schuller, “Plasmonics: the missing link between nanoelectronics and microphotonics,” Appl. Phys. A 89, 221-223 (2007). [CrossRef]
  3. W. L. Barnes, “Surface plasmon-polaritons length scales: a route to sub-wavelength optics,” J. Opt. A Pure Appl. Opt. 8, S87-S93 (2006). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  5. F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  6. T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002). [CrossRef] [PubMed]
  8. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429-432 (2002). [CrossRef]
  9. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007). [CrossRef]
  10. M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Dispersion of surface plasmon polaritons on silver film with rectangular hole arrays in a square lattice,” Appl. Phys. Lett. 89, 093102 (2006). [CrossRef]
  11. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A Pure Appl. Opt. 7, S90-S96 (2005). [CrossRef]
  12. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. KuipersI, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  13. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316-4318 (2004). [CrossRef]
  14. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  15. N. F. Van Hulst, “Sorting colours,” Nature Photon. 2, 139-140 (2008). [CrossRef]
  16. R. Gordan and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933-1938 (2005). [CrossRef]
  17. S. Collin, F. Pardo, and J.-L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15, 4310-4320 (2007). [CrossRef] [PubMed]
  18. A. Kumar and T. Srivastava, “Modeling of a nanoscale rectangular hole in a real metal,” Opt. Lett. 33, 333-335 (2008). [CrossRef] [PubMed]
  19. A. Kumar and T. Srivastava, “Performance of effective index method in the modeling of a nanoscale rectangular apertures in a real metal,” Opt. Commun. 281, 4526-4529 (2008). [CrossRef]
  20. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467-9476 (2006). [CrossRef] [PubMed]
  21. C. Themistos, B. M. A. Rahman, K. Thomas, and V. Grattan, “Finite element analysis of a lossy TE-TM modes in metal-clad optical waveguide,” Appl. Opt. 37, 5747-5754 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited