OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 15 — May. 20, 2009
  • pp: 2884–2889

Fast time-domain balanced homodyne detection of light

Ondřej Haderka, Václav Michálek, Vladimir Urbášek, and Miroslav Ježek  »View Author Affiliations


Applied Optics, Vol. 48, Issue 15, pp. 2884-2889 (2009)
http://dx.doi.org/10.1364/AO.48.002884


View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A balanced homodyne detection scheme with nanosecond time resolution and sub-shot-noise sensitivity has been developed and successfully tested yielding an efficient detection scheme for high-speed quantum-optical measurements and communication protocols, for example, quantum cryptography. The parameters of the detector and its precise balancing allow complete characterization of quantum states created by femtosecond light pulses that include the measurement of photon number, optical phase, and statistical properties with a high signal-to-noise ratio for the whole bandwidth from DC to several tens of megahertz. The electronic part of the detector is based on a commercially available amplifier that provides ease of construction and use while yielding good performance.

© 2009 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.5570) Detectors : Quantum detectors
(270.5570) Quantum optics : Quantum detectors
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Detectors

History
Original Manuscript: October 30, 2008
Revised Manuscript: March 10, 2009
Manuscript Accepted: April 21, 2009
Published: May 15, 2009

Citation
Ondřej Haderka, Václav Michálek, Vladimir Urbášek, and Miroslav Ježek, "Fast time-domain balanced homodyne detection of light," Appl. Opt. 48, 2884-2889 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-15-2884


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177-179 (1983). [CrossRef] [PubMed]
  2. G. L. Abbas, V. W. S. Chan, and S. T. Yee, “Local-oscillator excess-noise suppression for homodyne and heterodyne detection,” Opt. Lett. 8, 419-421 (1983). [CrossRef] [PubMed]
  3. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, 2000).
  4. U. Leonhardt, Measuring the Quantum State of Light (Cambridge U. Press, 1997).
  5. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985). [CrossRef] [PubMed]
  6. G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471-475 (1997). [CrossRef]
  7. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993). [CrossRef] [PubMed]
  8. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001). [CrossRef]
  9. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267-1269 (2004). [CrossRef] [PubMed]
  10. J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005). [CrossRef]
  11. A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, “Time-domain analysis of quantum states of light: noise characterization and homodyne tomography,” J. Opt. Soc. Am. B 19, 1189-1194 (2002). [CrossRef]
  12. A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821 (2004). [CrossRef]
  13. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001). [CrossRef] [PubMed]
  14. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006). [CrossRef] [PubMed]
  15. A. Zavatta, S. Viciani, M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004). [CrossRef] [PubMed]
  16. A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820(2005). [CrossRef]
  17. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006). [CrossRef] [PubMed]
  18. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007). [CrossRef] [PubMed]
  19. A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007). [CrossRef] [PubMed]
  20. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007). [CrossRef] [PubMed]
  21. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003). [CrossRef] [PubMed]
  22. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007). [CrossRef]
  23. J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005). [CrossRef]
  24. J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007). [CrossRef] [PubMed]
  25. R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458-1460 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited