OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 16 — Jun. 1, 2009
  • pp: 3001–3007

Temporal thermal response of Type II–IR fiber Bragg gratings

Changrui Liao, Dong-ning Wang, Yuhua Li, Tong Sun, and Kenneth T. V. Grattan  »View Author Affiliations


Applied Optics, Vol. 48, Issue 16, pp. 3001-3007 (2009)
http://dx.doi.org/10.1364/AO.48.003001


View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the phase mask method to investigate both experimentally and theoretically the temporal thermal response of Type II–IR fiber Bragg gratings inscribed by a femtosecond laser. A fast testing system is developed to measure the thermal response time by means of periodic CO 2 laser irradiation, which creates a rapid temperature change environment. The temporal thermal response is found to be independent of the heat power and the heat direction, although the grating produced destroys the axial symmetry of the fiber. The measured values of the temporal thermal response are 230 ms for heating and 275 ms for cooling, which different from the simulation results obtained from a lumped system equation. The causes of such differences are investigated in detail.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 12, 2009
Revised Manuscript: April 16, 2009
Manuscript Accepted: April 26, 2009
Published: May 22, 2009

Citation
Changrui Liao, Dong-ning Wang, Yuhua Li, Tong Sun, and Kenneth T. V. Grattan, "Temporal thermal response of Type II-IR fiber Bragg gratings," Appl. Opt. 48, 3001-3007 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-16-3001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. H. Shen, J. Xia, T. Sun, and K. T. V. Grattan, “Photosensitive indium-doped germano-silica fiber for strong FBG with high temperature sustainability,” IEEE Photon. Technol. Lett. 16, 1319-1321 (2004). [CrossRef]
  2. Y. H. Shen, J. L. He, T. Sun, and K. T. V. Grattan, “High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber: decay mechanisms involved during annealing,” Opt. Lett. 29, 554-556 (2004). [CrossRef] [PubMed]
  3. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377-5386 (2005). [CrossRef] [PubMed]
  4. E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, and S. Nolte, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390-2392 (2006). [CrossRef] [PubMed]
  5. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32, 454-456 (2007). [CrossRef] [PubMed]
  6. D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19, 943-945 (2007). [CrossRef]
  7. Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239-21247 (2008). [CrossRef] [PubMed]
  8. A. J. V. Wyk, P. L. Swart, and A. A. Chtcherbakov, “Fiber Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17, 1113-1117 (2006). [CrossRef]
  9. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29, 2127-2129 (2004). [CrossRef] [PubMed]
  10. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009-1013 (2006). [CrossRef]
  11. G. M. H. Flockhart, R. R. J. Maier, J. S. Barton, W. N. Macpherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, and P. D. Foote, “Quadratic behavior of fiber Bragg grating temperature coefficients,” Appl. Opt. 43, 2744-2751 (2004). [CrossRef] [PubMed]
  12. T. L. Lowder, J. A. Newman, W. M. Kunzler, J. D. Young, R. H. Selfridge, and S. M. Schultz, “Temporal response of surface-relief fiber Bragg gratings to high temperature CO2 laser heating,” Appl. Opt. 47, 3568-3573 (2008). [CrossRef] [PubMed]
  13. S. H. Cho, J. Park, B. Kim, and M. H. Kang, “Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion,” ETRI J. 26, 371-374 (2004). [CrossRef]
  14. Y. Wang and K. Vafai, “An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe,” Int. J. Heat Mass Transfer 43, 2657-2668(2000). [CrossRef]
  15. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242-250 (2006). [CrossRef]
  16. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat tranfer modeling in CO2 laser processing of optical fibers,” Opt. Commun. 152, 324-328 (1998). [CrossRef]
  17. G. Rego, L. M. N. B. F. Santos, and B. Schröder, “Estimation of the fiber temperature during an arc-discharge,” Microwave Opt. Technol. Lett. 50, 2020-2025 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited