OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 16 — Jun. 1, 2009
  • pp: 3019–3029

Polarized radiance fields under a dynamic ocean surface: a three-dimensional radiative transfer solution

Yu You, Peng-Wang Zhai, George W. Kattawar, and Ping Yang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 16, pp. 3019-3029 (2009)
http://dx.doi.org/10.1364/AO.48.003019


View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The hybrid matrix operator, Monte Carlo (HMOMC) method previously reported [ Appl. Opt. 47, 1063–1071 (2008)] is improved by neglecting higher-order terms in the coupling of the matrix operators and by introducing a dual grid scheme. The computational efficiency for solving the vector radiative transfer equation in a full 3D coupled atmosphere–surface–ocean system is substantially improved, and, thus, large-scale simulations of the radiance distribution become feasible. The improved method is applied to the computation of the polarized radiance field under realistic surface waves simulated by the power spectral density method. To the authors’ best knowledge, this is the first time that the polarized radiance field under a dynamic ocean surface and the underwater image of an object above such an ocean surface have been reported.

© 2009 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 25, 2009
Revised Manuscript: April 23, 2009
Manuscript Accepted: April 30, 2009
Published: June 1, 2009

Citation
Yu You, Peng-Wang Zhai, George W. Kattawar, and Ping Yang, "Polarized radiance fields under a dynamic ocean surface: a three-dimensional radiative transfer solution," Appl. Opt. 48, 3019-3029 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-16-3019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  2. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge U. Press, 2006).
  3. S. Twomey, H. Jacobowitz, and H. B. Howell, “Matrix methods for multiple-scattering problems,” J. Atmos. Sci. 23, 289-298 (1966). [CrossRef]
  4. S. Twomey, H. Jacobowitz, and H. B. Howell, “Light scattering by cloud layers,” J. Atmos. Sci. 24, 70-79 (1967). [CrossRef]
  5. G. N. Plass, G. W. Kattawar, and F. E. Catchings, “Matrix operator theory of radiative transfer. 1: Rayleigh scattering,” Appl. Opt. 12, 314-329 (1973). [CrossRef] [PubMed]
  6. G. W. Kattawar, G. N. Plass, and F. E. Catchings, “Matrix operator theory of radiative transfer. 2: Scattering from maritime haze,” Appl. Opt. 12, 1071-1084 (1973). [CrossRef] [PubMed]
  7. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988). [CrossRef] [PubMed]
  8. K. Stamnes, S.-C. Tsay, W. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” ftp://climate1.gsfc.nasa.gov/wiscombe/Multiple_Scatt/DISORTReport1.1.pdf (2000).
  9. C. D. Mobley, Light and Water--Radiative Transfer in Natural Waters (Academic, 1994).
  10. M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398-2416 (2001). [CrossRef]
  11. J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542-5567 (2006). [CrossRef] [PubMed]
  12. P. Zhai, Y. Hu, C. R. Trepte, and P. L. Lucker, “A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method,” Opt. Express 17, 2057-2079 (2009). [CrossRef] [PubMed]
  13. L. G. Stenholm, H. Störzer, and R. Wehrse, “An efficient method for the solution of 3D radiative transfer problems,” J. Quant. Spectrosc. Radiat. Transfer 45, 47-56 (1991). [CrossRef]
  14. A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Res. 33, 283-308(1994). [CrossRef]
  15. J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional dicrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379-398 (1997). [CrossRef]
  16. K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429-446 (1998). [CrossRef]
  17. D. H. Tofsted and S. G. O'Brien, “Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer,” Appl. Opt. 37, 7718-7728(1998). [CrossRef]
  18. C. Emde, S. A. Buehler, C. Davis, P. Eriksson, T. R. Sreerekha, and C. Teichmann, “A polarized discrete ordinate scattering model for simulations of limb and nadir long-wave measurements in 1-D/3-D spherical atmospheres,” J. Geophys. Res. 109, D24207 (2004). [CrossRef]
  19. P. N. Reinersman and K. L. Carder, “Hybrid numerical method for solution of the radiative transfer equation in one, two, or three dimensions,” Appl. Opt. 43, 2734-2743 (2004). [CrossRef] [PubMed]
  20. A. Marshak and A. B. Davis, eds., 3D Radiative Transfer in Cloudy Atmospheres (Springer, 2005). [CrossRef]
  21. C. Davis, C. Emde, and R. Harwood, “A 3D polarized reversed Monte Carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Remote Sensing 43, 1096-1101 (2005). [CrossRef]
  22. Y. Chen, K. N. Liou, and Y. Gu, “An efficient diffusion approximation for 3D radiative transfer parameterization: application to cloudy atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 92, 189-200 (2005). [CrossRef]
  23. I3RC group, “I3RC Monte Carlo community model of 3D radiative transfer,” see http://i3rc.gsfc.nasa.gov/I3RC-intro.html.
  24. D. E. Bates and J. N. Porter, “AO3D: a Monte Carlo code for modeling of environmental light propagation,” J. Quant. Spectrosc. Radiat. Transfer 109, 1802-1814 (2008). [CrossRef]
  25. C. Cox and W. Munk, “The measurement of the roughness of the sea surface from photographs of the sun's glitter,” J. Opt. Soc. Am. 44, 838-850 (1954). [CrossRef]
  26. J. Hedley, “A three-dimensional radiative transfer model for shallow water environments,” Opt. Express 16, 21887-21902(2008). [CrossRef] [PubMed]
  27. P.-W. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator-Monte Carlo method,” Appl. Opt. 47, 1063-1071(2008). [CrossRef] [PubMed]
  28. P.-W. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method,” Appl. Opt. 47, 1037-1047 (2008). [CrossRef] [PubMed]
  29. J. Fischer and H. Grassl, “Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix operator approach,” Appl. Opt. 23, 1032-1039 (1984). [CrossRef] [PubMed]
  30. Q. Liu and E. Ruprecht, “Radiative transfer model: matrix operator method,” Appl. Opt. 35, 4229-4237 (1996). [CrossRef] [PubMed]
  31. T. Dickey and G. Chang, “The Radiance in a Dynamic Ocean (RaDyO) Program,” presented at Ocean Optics XVIII, Montreal, Canada, 9-13 Oct. 2006, http://www.opl.ucsb.edu/radyo/docs/DickeyOOPoster06.pdf.
  32. “The Office of Naval Research: Radiance in a Dynamic Ocean (RaDyO),”http://www.opl.ucsb.edu/radyo/index.html.
  33. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Technical Report SIO 72-78 (Scripps Institution of Oceanography,1972).
  34. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941). [CrossRef]
  35. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484-7504 (1993). [CrossRef] [PubMed]
  36. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427-4439 (1984). [CrossRef] [PubMed]
  37. F. Schwenger and E. Repasi, “Sea surface simulation for testing of multiband imaging sensors,” Proc. SPIE 5075, 72-84 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (1280 KB)     
» Media 2: MPG (852 KB)     
» Media 3: MPG (1027 KB)     
» Media 4: MPG (596 KB)     
» Media 5: MPG (684 KB)     
» Media 6: MPG (962 KB)     
» Media 7: MPG (684 KB)     
» Media 8: MPG (484 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited