OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 16 — Jun. 1, 2009
  • pp: 3102–3107

Dispersion mechanism of surface magnetoplasmons in periodic layered structures

Xing-Xiang Liu, Chang-Fu Tsai, Ruey-Lin Chern, and Din Ping Tsai  »View Author Affiliations


Applied Optics, Vol. 48, Issue 16, pp. 3102-3107 (2009)
http://dx.doi.org/10.1364/AO.48.003102


View Full Text Article

Enhanced HTML    Acrobat PDF (522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the dispersion mechanism of surface magnetoplasmons for periodic layered structures in the Voigt configuration. An analytical dispersion relation that retains a similar form with ordinary surface plasmons is obtained. The splitting of surface plasma frequency is accompanied with unequal field strengths of surface modes at the two interfaces and is characterized by a simple dynamic model that recasts the role of magnetic force on to the effective mass. The underlying mechanism is illustrated with the transverse currents induced by the cyclotron motion of electrons, which appears as the typical feature of the dynamic Hall effect. In particular, the acoustical and optical branches exhibit an anticrossing scheme for small filling fractions, due to the like symmetry of modes in the two branches. As the parallel wave number changes, the two interaction branches experience a transition of mode pattern from symmetry to antisymmetry, or vice versa.

© 2009 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.6680) Optics at surfaces : Surface plasmons
(050.5745) Diffraction and gratings : Resonance domain

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 17, 2009
Manuscript Accepted: April 17, 2009
Published: May 26, 2009

Citation
Xing-Xiang Liu, Chang-Fu Tsai, Ruey-Lin Chern, and Din Ping Tsai, "Dispersion mechanism of surface magnetoplasmons in periodic layered structures," Appl. Opt. 48, 3102-3107 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-16-3102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539-554 (1969). [CrossRef]
  3. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28, 1455-1458 (1972). [CrossRef]
  4. K. W. Chiu and J. J. Quinn, “Magnetoplasma surface waves in metals,” Phys. Rev. B 5, 4707-4709 (1972). [CrossRef]
  5. R. E. De Wames and W. F. Hall, “Magnetic field effect on plasma-wave dispersion in a dielectric layer,” Phys. Rev. Lett. 29, 172-175 (1972). [CrossRef]
  6. J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007). [CrossRef]
  7. B. Sepúlveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945-955 (2006). [CrossRef]
  8. Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90, 171114 (2007). [CrossRef]
  9. D. C. Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and F. I. B. Williams, “Dynamical Hall effect in a two-dimensional classical plasma,” Phys. Rev. Lett. 54, 1710-1713(1985). [CrossRef] [PubMed]
  10. M. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416(2001). [CrossRef]
  11. R. F. Wallis, R. Szenics, J. J. Quinn, and G. F. Giuliani, “Theory of surface magnetoplasmon polaritons in truncated superlattices,” Phys. Rev. B 36, 1218-1224 (1987). [CrossRef]
  12. P. Halevi and C. Guerra-Vela, “Magnetoplasma polaritons at the interface between a semiconductor and a metallic screen,” Phys. Rev. B 18, 5248-5253 (1978). [CrossRef]
  13. P. Halevi, “Magnetoplasma polaritons at the interface between a semiconductor and a metallic screen. II. The Faraday geometry,” Phys. Rev. B 23, 2635-2639 (1981). [CrossRef]
  14. M. S. Kushwaha, “Effect of an applied magnetic field on interface excitations in finite layered structures,” Phys. Rev. B 35, 3871-3878 (1987). [CrossRef]
  15. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36, 5960-5967(1987). [CrossRef]
  16. M. S. Kushwaha, “Collective excitations of magnetoplasma in semi-infinite n-i-p-i superlattices,” Phys. Rev. B 48, 15445-15448 (1993). [CrossRef]
  17. C. C. Chang, R. L. Chern, C. C. Chang, and R. R. Hwang, “Interfacial operator approach to computing modes of surface plasmon polaritons for periodic structures,” Phys. Rev. B 72, 205112 (2005). [CrossRef]
  18. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).
  19. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).
  20. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed. (Pergamon, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited