Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization properties of polymer-dispersed liquid-crystal film with small nematic droplets

Not Accessible

Your library or personal account may give you access

Abstract

The polarization state of light transmitted through a polymer-dispersed liquid-crystal film with small, spherical, nonabsorbing, partially oriented nematic droplets is theoretically investigated. The model used is based on the effective medium approach. Scattering properties of a single droplet are described by the Rayleigh–Gans approximation. Propagation of coherent light is described within the framework of the Twersky theory. To describe the orientation of liquid-crystal molecules inside droplets and liquid-crystal droplets in a sample, the concept of multilevel order parameters is employed. Conditions for circular and linear polarization of the transmitted light are determined and investigated.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light

Georgi B. Hadjichristov, Yordan G. Marinov, and Alexander G. Petrov
Appl. Opt. 50(16) 2326-2333 (2011)

Influence of the director field structure on extinction and scattering by a nematic liquid-crystal droplet

Valery A. Loiko and Vladimir I. Molochko
Appl. Opt. 38(13) 2857-2861 (1999)

Polarized light scattering in a novel polymer dispersed liquid-crystal geometry

F. Bloisi, P. Terrecuso, and L. Vicari
J. Opt. Soc. Am. A 14(3) 662-668 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved