OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3291–3301

Expansion of field of view in digital in-line holography with a programmable point source

Adekunle A. Adeyemi and Thomas E. Darcie  »View Author Affiliations


Applied Optics, Vol. 48, Issue 18, pp. 3291-3301 (2009)
http://dx.doi.org/10.1364/AO.48.003291


View Full Text Article

Enhanced HTML    Acrobat PDF (1395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique for programming the source of the spherical reference illumination in digital in-line holography using digital micromirror devices. The programmable point source is achieved by individually addressing the elements of a digital micromirror device to spatially control the illumination of the object located at some distance from the source of the spherical reference field. By moving the location of the “ON” element on the digital micromirror device, translation of both the source of the spherical reference beam and the captured holograms is achieved. Results obtained through numerical recon struction of these translated holograms shows the possibility of expanding the field of view by about 263%.

© 2009 Optical Society of America

OCIS Codes
(230.6120) Optical devices : Spatial light modulators
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: March 18, 2009
Revised Manuscript: May 7, 2009
Manuscript Accepted: May 24, 2009
Published: June 10, 2009

Citation
Adekunle A. Adeyemi and Thomas E. Darcie, "Expansion of field of view in digital in-line holography with a programmable point source," Appl. Opt. 48, 3291-3301 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-18-3291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schnars and P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD-target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002). [CrossRef] [PubMed]
  4. W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001). [CrossRef] [PubMed]
  5. J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006). [CrossRef]
  6. J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).
  7. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  8. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]
  9. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459-2466 (2008). [CrossRef]
  10. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132-1134 (2004). [CrossRef] [PubMed]
  11. H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001). [CrossRef]
  12. S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).
  13. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654-5659 (2008). [CrossRef] [PubMed]
  14. A. L. P. Dlugan and C. E. MacAulay, “Update on the use of digital micromirror devices in quantitative microscopy,” Proc. SPIE 3604, 253-262 (1999). [CrossRef]
  15. V. Bansal, S. Patel, and P. Saggau, “A high speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device,” in Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2003), pp. 17-21.
  16. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003). [CrossRef]
  17. K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81-92 (1998). [CrossRef]
  18. R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999). [CrossRef]
  19. T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926-933 (2001). [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, 1991), Chap. 3. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited