OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3355–3361

Development of an ambient pressure laser-induced fluorescence instrument for nitrogen dioxide

Jeremy Parra and Linda A. George  »View Author Affiliations


Applied Optics, Vol. 48, Issue 18, pp. 3355-3361 (2009)
http://dx.doi.org/10.1364/AO.48.003355


View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Concerns about the health effects of nitrogen dioxide ( NO 2 ) and its role in forming deleterious atmospheric species have made it desirable to have low-cost, sensitive ambient measurements of NO 2 . We have developed a continuous-wave laser-diode laser-induced fluorescence (LIF) system for NO 2 that operates at ambient pressure, thereby eliminating the need for an expensive pumping system. The current prototype system has achieved sensitivity several orders of magnitude beyond previous efforts at ambient pressure (limit of detection of 2 ppb , 60 s averaging time). Ambient measurements of NO 2 were made in Portland, Oregon using both the standard NO 2 chemiluminescence method and the LIF instrument and showed good agreement ( r 2 = 0.92 ).

© 2009 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.2440) Instrumentation, measurement, and metrology : Filters
(140.2020) Lasers and laser optics : Diode lasers
(300.2530) Spectroscopy : Fluorescence, laser-induced
(330.6100) Vision, color, and visual optics : Spatial discrimination

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 25, 2009
Manuscript Accepted: April 22, 2009
Published: June 10, 2009

Citation
Jeremy Parra and Linda A. George, "Development of an ambient pressure laser-induced fluorescence instrument for nitrogen dioxide," Appl. Opt. 48, 3355-3361 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-18-3355


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. N. Lamsal, R. V. Martin, A. van Donkelaar, M. Steinbacher, E. A. Celarier, E. Bucsela, E. J. Dunlea, and J. P. Pinto, “Ground-level nitrogen dioxide concentrations inferred from the satellite-borne ozone monitoring instrument,” J. Geophys. Res. D 113, D16308 (2008). [CrossRef]
  2. J. S. Gaffney, R. M. Bornick, Y. H. Chen, and N. A. Marley, “Capillary gas chromatographic analysis of nitrogen dioxide and pans with luminol chemiluminescent detection,” Atmos. Environ. 32, 1445-1454 (1998). [CrossRef]
  3. N. A. Marley, J. S. Gaffney, R. V. White, L. Rodriguez-Cuadra, S. E. Herndon, E. Dunlea, R. M. Volkamer, L. T. Molina, and M. J. Molina, “Fast gas chromatography with luminol chemiluminescence detection for the simultaneous determination of nitrogen dioxide and peroxyacetyl nitrate in the atmosphere,” Rev. Sci. Instrum. 75, 4595-4605 (2004). [CrossRef]
  4. J. Hargrove, L. Wang, K. Muyskens, M. Muyskens, D. Medina, S. Zaide, and J. Zhang, “Cavity ring-down spectroscopy of ambient NO2 with quantification and elimination of interferences,” Environ. Sci. Technol. 40, 7868-7873 (2006). [CrossRef]
  5. J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528-539 (2000). [CrossRef] [PubMed]
  6. K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1-108 (2004). [CrossRef]
  7. P. A. Cleary, P. J. Wooldridge, and R. C. Cohen, “Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion,” Appl. Opt. 41, 6950-6956 (2002). [CrossRef] [PubMed]
  8. C. Fong and W. H. Brune, “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253-4262 (1997). [CrossRef]
  9. J. Matsumoto, J. Hirokawa, H. Akimoto, and Y. Kajii, “Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique,” Atmos. Environ. 35, 2803-2814 (2001). [CrossRef]
  10. F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser,” Appl. Opt. 46, 907-915 (2007). [CrossRef] [PubMed]
  11. L. A. George and R. J. O. O'Brien, “Prototype FAGE determination of NO2,” J. Atmos. Chem. 12, 195-209 (1991). [CrossRef]
  12. B. A. Mann, R. F. White, and R. J. S. Morrison, “Detection and imaging of nitrogen dioxide with the degenerate four-wave-mixing and laser-induced-fluorescence techniques,” Appl. Opt. 35 (3), p. 475-481 (1996). [CrossRef] [PubMed]
  13. R. H. Barnes and J. F. Kircher, “Laser NO2 fluorescence measurements in flames,” Appl. Opt. 17, 1099-1102 (1978). [CrossRef] [PubMed]
  14. E. J. Williams, K. Baumann, J. M. Roberts, S. B. Bertman, R. B. Norton, F. C. Fehsenfeld, S. R. Springston, L. J. Nunnermacker, L. Newman, K. Olszyna, J. Meagher, B. Hartsell, E. Edgerton, J. R. Pearson, and M. O. Rodgers, “Intercomparison of ground-based NOy measurement techniques,” J. Geophys. Res. D 103, 22261-22280 (1998). [CrossRef]
  15. J. Hargrove and J. Zhang, “Measurements of NOx, acyl peroxynitrates, and NOy with automatic interference corrections using a NO2 analyzer and gas phase titration,” Rev. Sci. Instrum. 79 (4) (2008). [CrossRef] [PubMed]
  16. T. M. Hard, R. J. O'Brien, C. Y. Chan, and A. A. Mehrabzadeh, “Tropospheric free radical determination by FAGE,” Environ. Sci. Technol. 18, 768-777 (1984). [CrossRef]
  17. V. M. Donnelly and F. Kaufman, “Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy,” J. Chem. Phys. 69, 1456-1460(1978). [CrossRef]
  18. V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Lifetime measurements of NO2 in the predissociation region 399-416 nm,” J. Quant. Spectrosc. Radiat. Transfer 69, 519-524 (2001). [CrossRef]
  19. V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465-490, 423-462 and 399-416 nm,” J. Quant. Spectrosc. Radiat. Transfer 69, 525-5342001. [CrossRef]
  20. A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, R. Colin, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: Temperature and pressure effects,” J. Geophys. Res. D 107, 4348 (2002). [CrossRef]
  21. A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391(2003). [CrossRef]
  22. M. C. Green, J. Xu, and N. Adhikari, “Transport of atmospheric aerosol by gap winds in the Columbia River gorge,” J. Appl. Meteor. Clim. 47, 15-26 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited