OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 18 — Jun. 20, 2009
  • pp: 3429–3437

Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic

Peter A. Krug, Rodica Matei Rogojan, and Jacques Albert  »View Author Affiliations

Applied Optics, Vol. 48, Issue 18, pp. 3429-3437 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We inscribed thick volume gratings in WMS-15 glass ceramic by ultraviolet light at 193 and 248 nm . Unlike earlier work in ceramic materials, the inscription process modified the optical properties of the material without the need for any additional chemical or thermal processing. Experimental evidence from measurements of grating growth, thermal annealing, and spectral absorption indicates that two distinct physical mechanisms are responsible for the grating formation. Weak, easily thermally bleached gratings resulted from exposure fluences below 0.3 kJ / cm 2 . Optical absorption measurements suggest that these low fluence gratings are predominantly absorption gratings. More thermally stable gratings, found to be refractive index gratings with unsaturated refractive index modulation amplitude as large as 6 × 10 5 were formed at cumulative fluences of 1 kJ / cm 2 and above.

© 2009 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(160.2750) Materials : Glass and other amorphous materials
(230.1480) Optical devices : Bragg reflectors
(160.5335) Materials : Photosensitive materials

ToC Category:
Diffraction and Gratings

Original Manuscript: January 12, 2009
Revised Manuscript: May 15, 2009
Manuscript Accepted: May 16, 2009
Published: June 11, 2009

Peter A. Krug, Rodica Matei Rogojan, and Jacques Albert, "Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic," Appl. Opt. 48, 3429-3437 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Höland and G. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).
  2. M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.
  3. C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: a review,” Mater. Sci. Eng. 95, 303-308 (1987). [CrossRef]
  4. D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.
  5. H. Bach and D. Krause, Low Thermal Expansion Glass Ceramics (Springer, 2005). [CrossRef]
  6. N. Goto, M. Kataoka, and D. G. Polensky, “Glass-ceramics for a light filter,” U.S. patent 6,677,259 (13 January 2004).
  7. .H. Minamikawa, K. Ohara, and N. Goto, “Low expansion transparent glass-ceramics, glass-ceramic substrate and optical waveguide element,” U.S. patent 7,148,164 (12 December 2006).
  8. Y. Feng, J. Lu, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers,” Appl. Opt. 43, 2944-2947(2004). [CrossRef] [PubMed]
  9. M. Ciofini and A. Lapucci, “Efficiency optimization for a diode-pumped Nd:YAG ceramic slab laser,” Appl. Opt. 44, 4388-4393 (2005). [CrossRef] [PubMed]
  10. A. Ikesue and V. L. Aung, “Ceramic laser materials,” Nat. Photon. 2, 721-727 (2008). [CrossRef]
  11. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, O. S. Dymshits, A. A. Zhilin, and U. Kang, “Cobalt-doped transparent glass ceramic as a saturable absorber Q switch for erbium:glass lasers,” Appl. Opt. 40, 4322-4325 (2001). [CrossRef]
  12. Y. V. Volk, A. M. Malyarevich, K. V. Yumashev, O. S. Dymshits, A. V. Shashkin, A. A. Zhilin, U. Kang, and K. Lee, “Influence of reducing-oxidizing conditions on the optical properties of Co2+-doped magnesium aluminosilicate glass ceramics and their use as an effective saturable absorber Q switch,” Appl. Opt. 43, 6011-6015 (2004). [CrossRef] [PubMed]
  13. T. Erdogan, A. Partovi, V. Mizrahi, P. J. Lemaire, W. L. Wilson, T. A. Strasser, and A. M. Glass, “Volume gratings for holographic storage applications written in high-quality germanosilicate glass,” Appl. Opt. 34, 6738-6743 (1995). [CrossRef] [PubMed]
  14. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  15. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  16. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507-9512 (2008). [CrossRef] [PubMed]
  17. S. D. Stookey, “Photosensitive glass--A new photographic medium,” Ind. Eng. Chem. 41, 856 (1949). [CrossRef]
  18. P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999). [CrossRef]
  19. F. E. Livingston, P. M. Adams, and H. Helvajian, “Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials,” Proc. SPIE 5662, 44-50 (2004). [CrossRef]
  20. F. E. Livingston and H. Helvajian, “Variable UV laser exposure processing of photosensitive glass-ceramics: maskless micro- to mesoscale structure fabrication,” Appl. Phys. A 81, 1569-1581 (2005). [CrossRef]
  21. L. B. Glebov and V. I. Smirnov, “Sensitization of photo-thermo-refractive glass to visible radiation by two-step illumination,” U.S. patent 7,326,500 (5 February 2008).
  22. M. Kösters, H.-T. Hsieh, D. Psaltis, and K. Buse, “Holography in commercially available photoetchable glasses,” Appl. Opt. 44, 3399-3402 (2005). [CrossRef] [PubMed]
  23. Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).
  24. O. M. Efimov, L. G. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619-627 (1999). [CrossRef]
  25. N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett. 90, 055507 (2003). [CrossRef] [PubMed]
  26. N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003). [CrossRef]
  27. A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006). [CrossRef]
  28. “Glass-ceramic substrate for DWDM thin-film filter (WMS-15)” (Ohara Corporation), http://www.ohara-inc.co.jp/en/product/electronics/wms.html.
  29. C. Ghio, Ohara Corporation (personal communication, 2008).
  30. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  31. M. Lancry, M. Douay, P. Niay, F. Beclin, Y. Menke, G. Milanese, M. Ferraris, and B. Poumellec, “Self induced gratings in ternary SiO2∶SnO2∶NaO2 bulk glasses by UV light seeding,” Opt. Express 13, 6878 (2005). [CrossRef] [PubMed]
  32. X.-C. Long and S. R. Brueck, “Large photosensitivity in lead-silicate glasses,” Appl. Phys. Lett. 74, 2110-2112 (1999). [CrossRef]
  33. J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited