Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Attenuation and mode profile determination of leaky/lossy modes in multilayer planar waveguides by a coupling simulation method

Not Accessible

Your library or personal account may give you access

Abstract

Leaky planar waveguides are critically important to the operation of present day and future integrated photonic circuits. However, to incorporate these waveguides successfully into practical photonic circuits requires an accurate knowledge of their attenuation and mode profile in operation. In contrast with previous numerical methods for obtaining leaky waveguide characteristics, which usually involve complicated algorithms to solve for the complex roots of boundary conditions, the transverse transmission/reflection (TTR) method presented here provides a straightforward and simple approach by simulating the corresponding coupled-waveguide structure. By adding a high-index layer adjacent to the cover to enable the coupling, the transmission/reflection coefficients are shown to be definitively expressed in the form of a Lorentzian that is directly related to the complex propagation constant of leaky/lossy mode. The TTR method simultaneously determines the mode profile of the leaky/lossy mode via the angle of incidence for resonant transmission/reflection. In the present work, the TTR method is applied to an antiresonant reflection optical waveguide (ARROW), a lossy waveguide structure, and a waveguide structure that is simultaneously leaky and lossy.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media

Chengkun Chen, Pierre Berini, Dazeng Feng, Stoyan Tanev, and Velko P. Tzolov
Opt. Express 7(8) 260-272 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved