OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3809–3817

Widely tunable coupled-cavity semiconductor laser

Ferdous K. Khan and Daniel T. Cassidy  »View Author Affiliations

Applied Optics, Vol. 48, Issue 19, pp. 3809-3817 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a widely tunable coupled-cavity semiconductor laser with a nearly continuous tuning capability of 100 nm . A below threshold model for coupled-cavity devices using a transfer matrix approach that takes into account the tilt of the facets forming the gap between the coupled sections was developed and is presented. Nonlinear fits of the below-threshold spectra to the model were used to extract device parameters. These fits and parameters were then used to understand the operation of the devices and the direction to take to improve the performance of the devices. It is observed that for facet angles 7 ° , a two-section coupled-cavity device works like an injection-locked laser, while for angles 4 ° , the sections work as a truly-coupled system.

© 2009 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3325) Lasers and laser optics : Laser coupling

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 20, 2009
Manuscript Accepted: May 7, 2009
Published: June 25, 2009

Ferdous K. Khan and Daniel T. Cassidy, "Widely tunable coupled-cavity semiconductor laser," Appl. Opt. 48, 3809-3817 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008). [CrossRef]
  2. M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008). [CrossRef]
  3. M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007). [CrossRef]
  4. S. Wang, “Principles of distributed feedback and distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 10, 413-427 (1974). [CrossRef]
  5. D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode lasers,” J. Mod. Opt. 46, 1071-1078 (1999).
  6. W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983). [CrossRef]
  7. K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983). [CrossRef]
  8. W. T. Tsang, R. A. Olsson, and R. A. Logan, “1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning,” Electron. Lett. 19, 488-490(1983). [CrossRef]
  9. V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochimica Acta A. 55, 2091-2096 (1999). [CrossRef]
  10. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426-430 (2003). [CrossRef]
  11. L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers--part I: threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659-670(1984). [CrossRef]
  12. H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385-393(1984). [CrossRef]
  13. W. T. Tsang, “The cleaved-couple-cavity (C3) laser,” in Semiconductor and Semimetals, W. T. Tsang, ed. (Academic, 1985), Vol. 22, Chap. 5.
  14. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982). [CrossRef]
  15. T. Fukushima and T. Sakamoto, “Optical signal inverter using injection locking of coupled semiconductor lasers,” Jpn. J. Appl. Phys 36, L280 (1997). [CrossRef]
  16. L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982). [CrossRef]
  17. L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981). [CrossRef]
  18. S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008). [CrossRef]
  19. S. Rubanov and P. R. Munroe, “Damage in III-V compounds during focused ion beam milling,” Microsc. Microanal. 11, 446-455 (2005). [CrossRef]
  20. Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004). [CrossRef]
  21. F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999). [CrossRef]
  22. J. Wang and D. T. Cassidy, “Broadly tunable, short external cavity diode laser for optical coherence tomography,” IET Optoelectron. 2, 46-54 (2008). [CrossRef]
  23. M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple quantum-well lasers,” IEEE J. Quantum Electron. 36, 978-983 (2000). [CrossRef]
  24. C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001). [CrossRef]
  25. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang ed. (Wiley, 1995), Chap. 3.
  26. G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640(2000). [CrossRef]
  27. D. T. Cassidy, “Analytic description of a homogeneously broadened injection laser,” IEEE J. Quantum Electron. 20, 913-918 (1984). [CrossRef]
  28. W. B. Joyce and B. C. Deloach, “Alignment of Gaussian beams,” Appl. Opt. 23, 4187-4196 (1984). [CrossRef] [PubMed]
  29. P. R. Bevington and D. K. Robinson, “Data Reduction and Error Analysis for Physical Sciences,” 2nd ed. (McGraw-Hill, 1969), pp. 161-164.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited