OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3818–3822

Nonlinearity in bent optical fibers

Fouad El-Diasty and Hatem A. El-Hennawi  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3818-3822 (2009)
http://dx.doi.org/10.1364/AO.48.003818


View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An interferometric method to study the induced variations of nonlinear parameters in bent optical fiber such as third-order susceptibility χ ( 3 ) and second-order refractive index n 2 is presented. Due to the expected nonlinear response of the Young’s modulus of fiber material, the profiles of asymmetric variations of the two parameters with curvature are observed and calculated, revealing the high spatial and index resolution of the method. The investigation is done in single-mode optical fibers at the standard operating wavelengths of 1300 and 1550 nm and at radii of curvature from 5 to 11 mm . At the minimum radius of curvature R = 5 mm , the cladding χ ( 3 ) = 4.131 × 10 15 esu on the tensile side, whereas on the compressed side it is 4.601 × 10 15 esu for λ = 1300 nm . On the tensile side n 2 = 1.09 × 10 13 esu , whereas on the compressed side it is 1.216 × 10 13 esu . For λ = 1550 nm , the cladding χ ( 3 ) and n 2 on the tensile side are 3.96 × 10 15 esu and 1.055 × 10 13 esu , whereas in the compressed cladding side they are 4.435 × 10 15 esu and 1.174 × 10 13 esu , respectively. At λ = 1300 nm and R = 5 mm , the core χ ( 3 ) is given by 4.631 × 10 15 esu on the tensile side and 4.649 × 10 15 esu on the compressed side. The asymmetry in n 2 is given by 1.223 × 10 13 esu on the tensile side and by 1.227 × 10 13 esu on the compressed side. With λ = 1550 nm , the core χ ( 3 ) asymmetry is given by 4.46 × 10 15 esu on the tensile side and by 4.477 × 10 15 esu on the compressed side. For n 2 its asymmetry is provided by 1.181 × 10 13 esu on the tensile side and by 1.185 × 10 13 esu on the compressed side.

© 2009 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 29, 2009
Manuscript Accepted: June 12, 2009
Published: June 25, 2009

Citation
Fouad El-Diasty and Hatem A. El-Hennawi, "Nonlinearity in bent optical fibers," Appl. Opt. 48, 3818-3822 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62-64 (1972). [CrossRef]
  2. E. P. Ippen and R. H. Appli, “Stimulated Brillouin scattering in optical fibers,” Phys. Lett. 21, 539-541 (1972).
  3. R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. 22, 294-296 (1973). [CrossRef]
  4. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308-310 (1974). [CrossRef]
  5. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100-103 (1975). [CrossRef]
  6. E. P. Ippen, C. V. Shank, and T. K. Gustafson, “Self-phase modulation of picosecond pulses in optical fibers,” Appl. Phys. Lett. 24, 190-192 (1974). [CrossRef]
  7. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978). [CrossRef]
  8. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13-15 (1984). [CrossRef] [PubMed]
  9. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Soliton Raman fibre-ring oscillators,” Opt. Quantum. Electron. 20, 165-174 (1988). [CrossRef]
  10. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47910-913 (1981). [CrossRef]
  11. A. S. L. Gomes, A. S. Gouveia-Neto, and J. R. Taylor, “Optical fibre-grating pulse compressors,” Opt. Quantum. Electron. 20, 95-112 (1988). [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  13. F. El-Diasty, “Multiple-beam interferometric determination of Poisson's ratio and strain distribution profiles along the cross section of bent single-mode optical fibers,” Appl. Opt. 39, 3197-3201 (2000). [CrossRef]
  14. F. El-Diasty, “Fizeau interferometry-based measurement of the photoelastic coefficient and the cut-off wavelength in bent standard single-mode optical fiber,” Opt. Commun. 225, 61-70 (2003). [CrossRef]
  15. E. M. Vogel, M. J. Weber, and D. M. Krol, Phys. Chem. Glasses 32, 231-254 (1991).
  16. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964). [CrossRef]
  17. R. C. O'Rourke, “Three-dimensional photoelasticity,” J. Appl. Phys. 22, 871-878 (1951). [CrossRef]
  18. F. El-Diasty, “Theory and measurement of Young's modulus radial profiles of bent single-mode optical fibers with the multiple-beam interference technique,” J. Opt. Soc. Am. A 18, 1171-1175 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited