OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3854–3859

Thermal analysis of microlens formation on a sensitized gelatin layer

Branka Murić, Dejan Pantelić, Darko Vasiljević, Bratimir Panić, and Branislav Jelenković  »View Author Affiliations

Applied Optics, Vol. 48, Issue 19, pp. 3854-3859 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze a mechanism of direct laser writing of microlenses. We find that thermal effects and photochemical reactions are responsible for microlens formation on a sensitized gelatin layer. An infrared camera was used to assess the temperature distribution during the microlens formation, while the diffraction pattern produced by the microlens itself was used to estimate optical properties. The study of thermal processes enabled us to establish the correlation between thermal and optical parameters.

© 2009 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.4760) Materials : Optical properties
(220.3630) Optical design and fabrication : Lenses
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Optical Design and Fabrication

Original Manuscript: March 17, 2009
Revised Manuscript: June 8, 2009
Manuscript Accepted: June 12, 2009
Published: June 30, 2009

Branka Murić, Dejan Pantelić, Darko Vasiljević, Bratimir Panić, and Branislav Jelenković, "Thermal analysis of microlens formation on a sensitized gelatin layer," Appl. Opt. 48, 3854-3859 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Nakano, “Spinning-disk confocal microscopy--a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349-355 (2002). [CrossRef] [PubMed]
  2. L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005). [CrossRef]
  3. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002). [CrossRef] [PubMed]
  4. H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261, 296-299 (2006). [CrossRef]
  5. P. Savander and H.-J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541-543 (1993). [CrossRef]
  6. S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002). [CrossRef]
  7. M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008). [CrossRef]
  8. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990). [CrossRef]
  9. K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42, 6349-6359(2003). [CrossRef] [PubMed]
  10. M-.H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18, 9312-9318 (2002). [CrossRef]
  11. B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531-535(2004). [CrossRef]
  12. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002). [CrossRef]
  13. R. Pericet-Camera, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15, 9877-9882 (2007). [CrossRef]
  14. N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24, 2520-2525 (1985). [CrossRef] [PubMed]
  15. C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003). [CrossRef] [PubMed]
  16. S. Calixto and M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101-2106 (1997). [CrossRef] [PubMed]
  17. R. A. Duarte-Quiroga and S. Calixto, “Dynamical optical microelements on dye-sensitized gels,” Appl. Opt. 39, 3948-3954 (2000). [CrossRef]
  18. G. Da Costa and J. Calatroni, “Self-holograms of laser-induced surface depressions in heavy hydrocarbons (ET),” Appl. Opt. 17, 2381-2385 (1978). [CrossRef]
  19. G. Da Costa and J. Calatroni, “Transient deformation of liquid surfaces by laser-induced thermocapillarity,” Appl. Opt. 18, 233-235 (1979). [CrossRef]
  20. T. Chia, L. L. Hench, C. Qin, and C. K. Hsieh, “Thermal modeling of laser-densified microlenses,” Appl. Opt. 33, 3486-3492 (1994). [CrossRef] [PubMed]
  21. Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001). [CrossRef]
  22. Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003). [CrossRef]
  23. B. D. Murić, D. V. Pantelić, D. M. Vasiljević, and B. M. Panić, “Properties of microlenses produced on a layer of tot'hema and eosin sensitized gelatin,” Appl. Opt. 46, 8527-8532 (2007). [CrossRef] [PubMed]
  24. Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008). [CrossRef]
  25. D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).
  26. D. Vasiljević, D. Pantelić, and B. Murić, “Imaging properties of laser-produced Gaussian profile microlenses,” Proc. SPIE 6604, 66040Q (2007). [CrossRef]
  27. G. Martínez-Ponce and C. Solano, “Photocrosslinking using linear polyols in xanthene dye-doped polyvinyl alcohol plates,” Opt. Express 14, 3776-3784 (2006). [CrossRef] [PubMed]
  28. http://www.vidal.fr/Medicament/tot_hema-16626.htm.
  29. http://omlc.ogi.edu/spectra/PhotochemCAD/html/EosinY-JZL.html.
  30. A. Shai and H. I. Maibach, Wound Healing and Ulcers of the Skin: Diagnosis and Therapy--the Practical Approach (Springer, 2005).
  31. http://www.flirthermography.com
  32. C. Kittel and H. Kroemer, Thermal Physics (Freeman, 1980).
  33. L. Stroebel, J. Compton, I. Current, and R. Zaria, Photographic Materials and Processes (Focal Press, 1985).
  34. G. Jehuda, W. Yongcai, and V. W. Gary, “Emulsion composition to control film core-set,” U.S. patent 6,485,896 (26 November 2002).
  35. S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited