OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 19 — Jul. 1, 2009
  • pp: 3866–3877

Autonomous extraction of optimal flame fronts in OH planar laser-induced fluorescence images

Mark Sweeney and Simone Hochgreb  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3866-3877 (2009)
http://dx.doi.org/10.1364/AO.48.003866


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The location of a flame front is often taken as the point of maximum OH gradient. Planar laser-induced fluorescence of OH can be used to obtain the flame front by extracting the points of maximum gradient. This operation is typically performed using an edge detection algorithm. The choice of operating parameters a priori poses significant problems of robustness when handling images with a range of signal-to-noise ratios. A statistical method of parameter selection originating in the image processing literature is detailed, and its merit for this application is demonstrated. A reduced search space method is proposed to decrease computational cost and render the technique viable for large data sets. This gives nearly identical output to the full method. These methods demonstrate substantial decreases in data rejection compared to the use of a priori parameters. These methods are viable for any application where maximum gradient contours must be accurately extracted from images of species or temperature, even at very low signal-to-noise ratios.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(280.2470) Remote sensing and sensors : Flames
(300.2530) Spectroscopy : Fluorescence, laser-induced
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

History
Original Manuscript: January 5, 2009
Revised Manuscript: May 20, 2009
Manuscript Accepted: June 12, 2009
Published: June 30, 2009

Citation
Mark Sweeney and Simone Hochgreb, "Autonomous extraction of optimal flame fronts in OH planar laser-induced fluorescence images," Appl. Opt. 48, 3866-3877 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-19-3866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Hartung, J. Hult, C. F. Kaminksi, J. W. Rogerson, and N. Swaminathan, “Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion,” Phys. Fluids 20, 035110 (2008). [CrossRef]
  2. E. P. Hassel and S. Linow, “Laser diagnostics for studies of turbulent combustion,” Meas. Sci. Technol. 11, R37-R57 (2000). [CrossRef]
  3. B. O. Ayoola, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame 144, 1-16 (2006). [CrossRef]
  4. R. S. Barlow, G.-H. Wang, P. Anselmo-Filho, M. S.Sweeney, and S. Hochgreb, “Application of Raman/Rayleigh/LIF diagnostics in turbulent stratified flames,” Proc. Combust. Inst. 32, 945-953 (2008). [CrossRef]
  5. D. Veynante, J. Piana, J. M. Duclos, and C. Martel, “Experimental analysis of flame surface density models for premixed turbulent combustion,” Proc. Combust. Inst. 26, 413-420 (1996).
  6. S. Gashi, J. Hult, K. W. Jenkins, N. Chakraborty, S. Cant, and C. F. Kaminski, “Curvature and wrinkling of premixed flame kernels--comparisons of OH PLIF and DNS data,” Proc. Combust. Inst. 30, 809-817 (2005). [CrossRef]
  7. O. Nobuyuki, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62-66 (1979). [CrossRef]
  8. L. G. Roberts, “Machine perception of three dimensional solids,” in Optical and Electro-Optical Information Processing, J. Tippett, ed. (MIT Press, 1965), pp. 159-197
  9. J. M. S. Prewitt, “Object enhancement and extraction,” in Picture Processing and Psychopictorics, B. S. Lipkin and A. Rosenfeld, eds. (Academic, 1970), pp. 75-149
  10. I. Sobel, “Camera models and machine perception,” Ph.D. dissertation (Stanford University, 1970).
  11. J. F. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679-698(1986). [CrossRef]
  12. H. Malm, G. Sparr, J. Hult, and C. F. Kaminski, “Nonlinear diffusion filtering of images obtained by planar-laser-induced fluorescence spectroscopy,” J. Opt. Soc. Am. A 17, 2148-2156 (2000). [CrossRef]
  13. T. Peli and D. Malah, “A study of edge detection algorithms,” Comput. Graph. Image Process. 20, 1-21 (1982). [CrossRef]
  14. M. Heath, S. Sarkar, T. Sanocki, and K. Bowyer, “Comparison of edge detectors: amethodology and initial study,” Comput. Vision Image Understand. 69, 38-54 (1998). [CrossRef]
  15. S. Venkatesh and L. J. Kitchen, “Edge evaluation using necessary components,” CVGIP: Graph. Models Image Process. 54, 23-30 (1992). [CrossRef]
  16. A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. Goldof, and K. Bowyer, “Comparison of range image segmentation algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 673-689 (1996). [CrossRef]
  17. Y. J. Zhang, “A survey on evaluation methods for image segmentation,” Pattern Recogn. 29, 1335-1346 (1996). [CrossRef]
  18. R. Román, J. F. Gómez-Lopera, C. Atae-Allah, J. Martínez-Aroza, and P. L. Luque-Escamilla, “A measure of quality for evaluating methods of segmentation and edge detection,” Pattern Recogn. 34, 969-980 (2001). [CrossRef]
  19. Y. Yitzhaky and E. Peli, “A method for objectve edge detection evaluation and detector parameter selection,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1027-1033 (2003). [CrossRef]
  20. K. Raghupathy, “Curve tracing and curve detection in images,” M.S. thesis (Cornell University, 2004).
  21. H. Kraemer, Evaluating Medical Tests: Objective and Quantitative Guidelines (Sage Publications, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited