OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 161–166

Photorefractive dynamic properties of Ca 2 + -doped strontium barium niobate crystals

Ch. Y. Gao, H. R. Xia, J. Q. Xu, C. L. Zhou, Sh. Ch. Si, H. J. Zhang, and J. Y. Wang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 161-166 (2009)
http://dx.doi.org/10.1364/AO.48.000161


View Full Text Article

Enhanced HTML    Acrobat PDF (685 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurements for photorefractive dynamic properties under polarized light with different luminous intensity and wavelength at 650 nm were performed in calcium-doped strontium barium niobate crystals as a function of the time. Experimental results further validated that the different input luminous intensities influence only the saturated time and photorefractive velocity of the photorefractive crystals. Birefringence experiments suggest that an input luminous intensity oscillatory threshold should exist between 64 m W / cm 2 and 13 m W / cm 2 . The dynamic change of refractive index from self-focusing to asymmetric self-defocusing was also measured and regarded as the mutual results of the nonuniform-intensity incidence and positive thermal lens effect, which was validated by a further experiment based on the Michelson interference. Also, oscillation accompanying change in the dynamic indices was analyzed and attributed to the high dielectric effect as well as asymmetric self-defocusing in this investiga tion.

© 2009 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.0190) Nonlinear optics : Nonlinear optics
(260.1440) Physical optics : Birefringence

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 12, 2008
Revised Manuscript: September 18, 2008
Manuscript Accepted: October 24, 2008
Published: January 7, 2009

Citation
Ch. Y. Gao, H. R. Xia, J. Q. Xu, C. L. Zhou, Sh. Ch. Si, H. J. Zhang, and J. Y. Wang, "Photorefractive dynamic properties of Ca2+-doped strontium barium niobate crystals," Appl. Opt. 48, 161-166 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Rakuljic, K. Sayano, A. Agranat, A. Yariv, and R. R. Neurgaonkar, “Photorefractive properties of Ce- and Ca-doped Sr0.6Ba0.4Nb2O6,” Appl. Phys. Lett. 53, 1465-1467(1988). [CrossRef]
  2. M.-H. Li, T.-Ch. Chong, X.-W. Xu, and H. Kumagai, “Growth and spectra characterization of Ce and Eu doped SBN crystals,” J. Cryst. Growth 225, 479-483 (2001). [CrossRef]
  3. R. R. Neurgaonkar, J. R. Oliver, W. K. Cory, L. E. Cross, and D. Viehland, “Piezoelectricity in tungsten bronze crystals,” Ferroelectrics 160, 265-276 (1994). [CrossRef]
  4. A. M. Glass, “Investigation of the electrical properties of Sr1−xBaxNb2O6 with spatial reference to pyroelectric detection,” J. Appl. Phys. 40, 4699-4713 (1969). [CrossRef]
  5. C.-Y. Gao, H.-R. Xia, J.-Q. Xu, S.-C. Si, H.-J. Zhang, J.-Y. Wang, and H.-L. Song, “Photorefractive variation properties of Ca2+ doped sodium barium niobate crystals,” Acta Phys. Sin. 56, 4648-4652 (2007) (in Chinese).
  6. M. Goulkov, O. Fedorenko, L. Ivleva, M. Böttcher, Th. Woike, T. Granzow, M. Imlau, and M. Wöhlecke, “Photorefractive parametric scattering in the ferroelectric relaxor SBN: Phenomenological and application aspects,” Phys. Rev. B 71, 024104 (2005). [CrossRef]
  7. M. J. Miller, E. J. Sharp, G. L. Wood, W. W. Clark III, G. J. Salamo, and R. R. Neurgaonkar, “Time response of a cerium-doped Sr0.75Ba0.25Nb2O6 self-pumped phase-conjugate mirror,” Opt. Lett. 12, 340-342 (1987). [CrossRef] [PubMed]
  8. S. R. Montgomery, M. P. Gallagher, G. J. Salamo, E. J. Sharp, Gary L. Wood, and R. R. Neurgaonkar, “Cooperative photorefractive beam fanning in BaSrKNaNb5O15,” J. Opt. Soc. Am. B. 11, 1694-1699 (1994). [CrossRef]
  9. D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, “Theory of incoherent self-focusing in biased photorefractive media,” Phys. Rev. Lett. 78, 646-649 (1997). [CrossRef]
  10. M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and Jack Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374-380 (1987). [CrossRef]
  11. A. Siahmakoun, D. Breitling, and R. A. Najaf-Zadeh, “Continuous-wave Z-scan measurement of photorefractive SBN:60,” Appl. Opt. 39, 5360-5366 (2000). [CrossRef]
  12. G. L. Wood, W. W. Clark III, M. J. Miller, E. J. Sharp, G. J. Salamo, and R. R. Neurgaonkar, “Broadband photorefractive properties and self-pumped phase conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. 23, 2126-2135(1987). [CrossRef]
  13. M. Y. Goulkov, T. Granzow, U. Dörfler, T. Woike, M. Imlau, and R. Pankrath, “Study of beam-fanning hysteresis in photo-refractive SBN:Ce:light-induced and primary scattering as functions of polar structure,” Appl. Phys. B 76, 407-416(2004). [CrossRef]
  14. D. Kip, E. Kratzig, V. Shandarov, and P. Moretti, “Thermally induced self-focusing and optical beam interactions in planar strontium barium niobate waveguides,” Opt. Lett. 23, 343-345 (1998). [CrossRef]
  15. R. Demirbilek, S. E. Kapphan, A. B. Kutsenko, and R. Pankrath,“ Investigation of two-center holographic recording in SBN:Ce:Cr and SBN:Mn:Fe,” Phys. Status Solidi C 2, 653-656 (2005). [CrossRef]
  16. P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171-14176 (2007). [CrossRef] [PubMed]
  17. F. S. Chen, “Optically induced change of refractive indices in LiNO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969). [CrossRef]
  18. Y. Jiang, S.-M. Liu, H.-D. Wen, X.-Z. Zhang, R. Guo, X.-H. Chen, J.-J. Xu, and G.-Y. Zhang “Dynamic conversion from self-defocusing to equivalent 'self-focusing' in photovoltaic LiNbO3:Fe crystals,” Acta Phys. Sin. 50, 483-488(2001).
  19. C. Anastassiou, M.-F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23, 924-926 (1998). [CrossRef]
  20. J. Feinberg “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51(1982). [CrossRef]
  21. W.-L She, S.-R. He, H.-Z. Wang, Z.-X. Yu, and D. Mo, “Photorefractive asymmetrical self-defocusing induced by thermal self-defocusing,” Acta Phys. Sin. 45, 2022-2026 (1996) (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited