OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 167–175

On-axis probability density function and fade behavior of partially coherent beams propagating through turbulence

Xifeng Xiao and David Voelz  »View Author Affiliations

Applied Optics, Vol. 48, Issue 2, pp. 167-175 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the gamma–gamma and lognormal distributions as they apply to the irradiance at a point detector produced by partially coherent beams propagating horizontally through atmospheric turbulence. Our investigation compares the probability density functions and probability of fade predicted by the distributions with results from a wave-optics simulation developed for partially coherent beam propagation. For a partially coherent beam that is not too far removed from a coherent beam, we find the wave-optics results tend to the gamma–gamma model for the weak fluctuation regime and the results are closer to the lognormal model for the strong fluctuation regime. We observe that increasing the initial beam size/Fried parameter ratio ( w 0 / r 0 ) or shortening the coherence length ( l c ) tends to narrow the probability density profile produced by the simulation.

© 2009 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(110.4980) Imaging systems : Partial coherence in imaging
(290.5930) Scattering : Scintillation

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 22, 2008
Revised Manuscript: November 20, 2008
Manuscript Accepted: November 20, 2008
Published: January 7, 2009

Xifeng Xiao and David Voelz, "On-axis probability density function and fade behavior of partially coherent beams propagating through turbulence," Appl. Opt. 48, 167-175 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. N. Kolmogorov, “Dissipation of energy in the locally isotropic turbulence,” reprinted in Proc. R. Soc. London. Ser. A 434, 15-17 (1991). [CrossRef]
  2. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794-1802 (2002). [CrossRef]
  3. J. J. Kiriazes, R. L. Phillips, and L. C. Andrews, “Analysis of fading for a free-space optical communication link subject to atmospheric scintillation,” Proc. SPIE 5160, 253-264 (2004). [CrossRef]
  4. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293-1300 (2002). [CrossRef]
  5. N. Perlot, “Turbulence-induced fading probability in coherent optical communication through the atmosphere,” Appl. Opt. 46, 7218-7226 (2007). [CrossRef] [PubMed]
  6. O. Korotkova, “Control of the intensity fluctuation of random electromagnetic beams on propagation in weak atmospheric turbulence,” Proc. SPIE 6105, 61050V (2006). [CrossRef]
  7. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16, 1417-1429 (1999). [CrossRef]
  8. T. J. Schulz, “Optimal beams for propagation through random media,” Opt. Lett. 30, 1093-1095 (2005). [CrossRef] [PubMed]
  9. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330-341 (2004). [CrossRef]
  10. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46, 2099-2108 (2007). [CrossRef] [PubMed]
  11. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554-1562 (2001). [CrossRef]
  12. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001). [CrossRef]
  13. A. D. Wheelon, “Skewed distribution of irradiance predicted by the second-order Rytov approximation,” J. Opt. Soc. Am. A 18, 2789-2798 (2001). [CrossRef]
  14. S. M. Flatte, C. Bracher, and G. Y. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080-2092 (1994). [CrossRef]
  15. G. J. Baker, “Gaussian beam weak scintillation: low-order turbulence effects and applicability of the Rytov method,” J. Opt. Soc. Am. A 23, 395-417 (2006). [CrossRef]
  16. F. S. Vetelino, C. Young, and L. Andrews, “Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence,” Appl. Opt. 46, 3780-3789 (2007). [CrossRef] [PubMed]
  17. S. C. H. Wang and M. A. Plonus, “Optical beam propagation for a partially coherent source in the turbulent atmosphere,” J. Opt. Soc. Am. 69, 1297-1304 (1979). [CrossRef]
  18. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592-1598(2002). [CrossRef]
  19. T. Shirai, A. Dogariu, and E. Wolf, “Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence,” Opt. Lett. 28, 610-612 (2003). [CrossRef] [PubMed]
  20. O. Korotkova, “Changes in the intensity fluctuations of a class of random electromagnetic beams on propagation,” J. Opt. A Pure Appl. Opt. 8, 30-37 (2006). [CrossRef]
  21. D. Voelz and K. Fitzhenry, “Pseudo-partially coherent beam for free-space laser communication,” Proc. SPIE 5550, 218-224 (2004). [CrossRef]
  22. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Speckle propagation through atmospheric turbulence: effects of a random phase screen at the source,” Proc. SPIE 4821, 98-109 (2002). [CrossRef]
  23. J. C. Ricklin, S. Bucaille, and F. M. Davidson, “Performance loss factors for optical communication through clear air turbulence,” Proc. SPIE 5160, 1-12 (2004). [CrossRef]
  24. O. Korotkova, L. C. Andrews, and R. L. Phillips, “The effect of partially coherent quasi-monochromatic Gaussian-beam on the probability of fade,” Proc. SPIE 5160, 68-77 (2004). [CrossRef]
  25. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005), pp. 321-393. [CrossRef]
  26. X. Xiao and D. Voelz, “Wave optics simulation approach for partial spatially coherent beams,” Opt. Express 14, 6986-6992 (2006). [CrossRef] [PubMed]
  27. X. Xiao and D. Voelz, “Toward optimizing partial spatially coherent beams for free space laser communications,” Proc. SPIE 6709, 67090P (2007). [CrossRef]
  28. J. H. Churnside and R. J. Lataitis, “Wander of an optical beam in the turbulent atmosphere,” Appl. Opt. 29, 926-930 (1990). [CrossRef] [PubMed]
  29. F. Dios, J. A. Rubio, A. Rodriguez, and A. Comeron, “Scintillation and beam-wander analysis in an optical ground station-satellite uplink,” Appl. Opt. 43, 3866-3873 (2004). [CrossRef] [PubMed]
  30. L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001(2006). [CrossRef]
  31. J. Recolons, L. C. Andrews, and R. L. Phillips, “Analysis of beam wander effects for a horizontal-path propagating Gaussian-beam wave: focused beam case,” Opt. Eng. 46, 086002 (2007). [CrossRef]
  32. F. Dios, J. Recolons, A. Rodriguez, and O. Batet, “Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens,” Opt. Express 16, 2206-2220 (2008). [CrossRef] [PubMed]
  33. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005), pp. 667-711. [CrossRef]
  34. R. Rao, “Statistics of the fractal structure and phase singularity of a plane light wave propagation in atmospheric turbulence,” Appl. Opt. 47, 269-276 (2008). [CrossRef] [PubMed]
  35. S. M. Flatte and J. S. Gerber, “Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence,” J. Opt. Soc. Am. A 17, 1092-1097 (2000). [CrossRef]
  36. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, 1996), Chap. 3.
  37. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Phase diffuser at the transmitter for lasercom link: effect of partially coherent beam on the bit-error rate,” Proc. SPIE 4976, 70-77 (2003). [CrossRef]
  38. X. Xiao and D. Voelz, “Wave optics simulation of pseudo-partially coherent beam propagation through turbulence: application to laser communications,” Proc. SPIE 6304, 63040L(2006). [CrossRef]
  39. R. A. Johnston and R. G. Lane, “Modeling scintillation from an aperiodic Kolmogorov phase screen,” Appl. Opt. 39, 4761-4769 (2000). [CrossRef]
  40. R. G. Lane, A. Glindermann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209-224 (1992). [CrossRef]
  41. A. Belmonte, “Feasibility study for the simulation beam propagation: consideration of coherent of coherent lidar performance,” Appl. Opt. 39, 5426-5445 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited