OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 250–260

Mueller matrix imaging of targets under an air–sea interface

Peng-Wang Zhai, George W. Kattawar, and Ping Yang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 250-260 (2009)
http://dx.doi.org/10.1364/AO.48.000250


View Full Text Article

Enhanced HTML    Acrobat PDF (1331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Mueller matrix imaging method is a powerful tool for target detection. In this study, the effect of the air–sea interface on the detection of underwater objects is studied. A backward Monte Carlo code has been developed to study this effect. The main result is that the reflection of the diffuse sky light by the interface reduces the Mueller image contrast. If the air–sea interface is ruffled by wind, the distinction between different regions of the underwater target is smoothed out. The effect of the finite size of an active light source is also studied. The image contrast is found to be relatively insensitive to the size of the light source. The volume scattering function plays an important role on the underwater object detection. Generally, a smaller asymmetry parameter decreases the contrast of the polarimetry images.

© 2009 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(290.1350) Scattering : Backscattering
(290.7050) Scattering : Turbid media

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 30, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: November 20, 2008
Published: January 7, 2009

Citation
Peng-Wang Zhai, George W. Kattawar, and Ping Yang, "Mueller matrix imaging of targets under an air-sea interface," Appl. Opt. 48, 250-260 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T.Gehrels, ed. Planets, Stars and Nebulae (University of Arizona, 1974).
  2. S. R. Pal and A. I. Carswell, “Polarization anisotropy in lidar multiple scattering from atmospheric clouds,” Appl. Opt. 24, 3464-3471 (1985). [CrossRef] [PubMed]
  3. D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Proceedings of laser radar techniques for atmospheric sensing,” Proc. SPIE 5575, 8-15 (2004). [CrossRef]
  4. L. Wang, P. P. Ho, G. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769-771 (1991). [CrossRef] [PubMed]
  5. S. K. Gayen and R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photonics News 7, 17-22 (1996). [CrossRef]
  6. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150-155 (1997). [CrossRef] [PubMed]
  7. M. J. Raković and G. W. Kattawar, “Theoretical analysis of polarization patterns from incoherent backscattering of light,” Appl. Opt. 37, 3333-3338 (1998). [CrossRef]
  8. B. D. Cameron, M. J. Raković, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485-487 (1998). [CrossRef]
  9. M. J. Raković, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399-3408 (1999). [CrossRef]
  10. G. W. Kattawar and M. J. Raković, “Virtues of Mueller matrix imaging for underwater target detection,” Appl. Opt. 38, 6431-6438 (1999). [CrossRef]
  11. G. W. Kattawar and D. J. Gray, “Mueller matrix imaging of targets in turbid media: effect of the volume scattering function,” Appl. Opt. 42, 7225-7230 (2003). [CrossRef]
  12. G. Yao, “Differential optical polarization imaging in turbid media with different embedded objects,” Opt. Commun. 241, 255-261 (2004). [CrossRef]
  13. X. Gan, S. P. Schilders, and M. Gu, “Image enhancement through turbid media under a microscope by use of polarization gating methods,” J. Opt. Soc. Am. A 16, 2177-2184 (1999). [CrossRef]
  14. J. H. Ali, W. B. Wang, P. P. Ho, and R. R. Alfano, “Detection of corrosion beneath a paint layer by use of spectral polarization optical imaging,” Opt. Lett. 25, 1303-1305 (2000). [CrossRef]
  15. J. Zallat, C. Collet, and Y. Takakura, “Clustering of polarization-encoded images,” Appl. Opt. 43, 283-292 (2004). [CrossRef] [PubMed]
  16. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824-2832 (2004). [CrossRef] [PubMed]
  17. Alberic Jaulin, Laurent Bigue, and Pierre Ambs, “High-speed degree-of-polarization imaging with a ferroelectric liquid-crystal modulator,” Opt. Eng. 47, 033201 (2008). [CrossRef]
  18. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941). [CrossRef]
  19. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427-4439 (1984). [CrossRef] [PubMed]
  20. L. Roberti, “Monte Carlo radiative transfer in the microwave and in the visible: biasing techniques,” Appl. Opt. 36, 7929-7938 (1997). [CrossRef]
  21. L. Roberti and C. Kummerow, “Monte Carlo calculations of polarized microwave radiation emerging from cloud structures,” J. Geophys. Res. 104, 2093-2104 (1999). [CrossRef]
  22. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400-412 (2001). [CrossRef]
  23. P. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method,” Appl. Opt. 47, 1037-1047 (2008). [CrossRef] [PubMed]
  24. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  25. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988). [CrossRef] [PubMed]
  26. R. D. M. Garcia and C. E. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 36, 401-423 (1986). [CrossRef]
  27. F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-I. theory,” J. Quant. Spectrosc. Radiat. Transfer 47, 19-33 (1992). [CrossRef]
  28. F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere II. Application,” J. Quant. Spectrosc. Radiat. Transfer 47, 35-42 (1992). [CrossRef]
  29. D. M. O'Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 48, 41-59 (1992). [CrossRef]
  30. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803-2812 (1993). [CrossRef] [PubMed]
  31. E. P. Zege and L. I. Chaikovskaya, “New approach to the polarized radiative transfer problem,” J. Quant. Spectrosc. Radiat. Transfer 55, 19-31 (1996). [CrossRef]
  32. K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429-446 (1998). [CrossRef]
  33. Concise Dictionary of Scientific Biography (Scribner, 1981), p. 643. Willebrord Snel von Royen used only one l in his last name.
  34. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035-1050(2002). [CrossRef] [PubMed]
  35. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography, 1977).
  36. C. Cox and W. Munk, “Statistics of sea surface derived from sun glitter,” J. Mar. Res. 13, 198-227 (1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited