OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 287–301

Cascaded adaptive-mask algorithm for twin-image removal and its application to digital holograms of ice crystals

Sebastian M. F. Raupach  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 287-301 (2009)
http://dx.doi.org/10.1364/AO.48.000287


View Full Text Article

Enhanced HTML    Acrobat PDF (1834 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An iterative Gerchberg–Saxton-type algorithm with a support constraint for twin-image removal from reconstructed Gabor inline holograms of single plane objects is described. It is applied to simulated holograms and to holograms of ice crystals recorded in the laboratory and in atmospheric clouds in situ. The algorithm is characterized by a distinction between object and background region and an iterative adaption of the object mask. Applying the algorithm to recorded inline holograms of atmospheric objects, the twin-image artifacts are removed successfully, for the first time allowing for a proper access to the in situ phase information on atmospheric ice crystals. It is also demonstrated that, after application of the algorithm, previously indiscernible internal object features can become visible for large Fresnel numbers.

© 2009 Optical Society of America

OCIS Codes
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(100.5070) Image processing : Phase retrieval
(010.1615) Atmospheric and oceanic optics : Clouds
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: August 13, 2008
Revised Manuscript: November 4, 2008
Manuscript Accepted: November 5, 2008
Published: January 7, 2009

Citation
Sebastian M. F. Raupach, "Cascaded adaptive-mask algorithm for twin-image removal and its application to digital holograms of ice crystals," Appl. Opt. 48, 287-301 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-287


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777-778(1948). [CrossRef] [PubMed]
  2. D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849-858(1966). [CrossRef]
  3. G. Koren, D. Joyeux, and F. Polack, “Twin-image elimination in in-line holography of finite-support complex objects,” Opt. Lett. 16, 1979-1981 (1991). [CrossRef] [PubMed]
  4. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234-3241 (2003). [CrossRef] [PubMed]
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381(1963). [CrossRef]
  6. L. W. Bragg and G. L. Rogers, “Elimination of the unwanted image in diffraction microscopy,” Nature 167, 190-191 (1951). [CrossRef] [PubMed]
  7. A. Lohmann, “Optische Einseitenbandübertragung angewandt auf das Gabor-Mikroskop,” J. Mod. Opt. 3:2, 97-99(1956). [CrossRef]
  8. O. Bryngdahl and A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am. 58, 620-624 (1968). [CrossRef]
  9. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130(1962). [CrossRef]
  10. U. Schnars and W. Jueptner, Digital Holography (Springer-Verlag, 2005).
  11. M. K. Kim, Y. Lingfeng, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A Pure Appl. Opt. 8, S518-S523 (2006). [CrossRef]
  12. G. Pedrini, F. Zhang, and W. Osten, “Digital holographic microscopy in the deep (193 nm) ultraviolet,” Appl. Opt. 46, 7829-7835 (2007). [CrossRef] [PubMed]
  13. H. Lichte, P. Formanek, A. Lenk, M. Linck, C. Matzeck, M. Lehmann, and P. Simon, “Electron holography: application to materials questions,” Annu. Rev. Mater. Res. 37, 539-588(2007). [CrossRef]
  14. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
  15. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909-911 (2007). [CrossRef] [PubMed]
  16. J. M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471-5480 (2008). [CrossRef] [PubMed]
  17. M. Gross, M. Atlan, and E. Absil, “Noise and aliases in off-axis and phase-shifting holography,” Appl. Opt. 47, 1757-1766(2008). [CrossRef] [PubMed]
  18. I. Yamaguchi and T. Zhang, “Phase shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  19. L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Burkeeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B 77, 081408(R) (2008). [CrossRef]
  20. P. Korecki, G. Materlik, and J. Korecki, “Complex γ-ray hologram: solution to twin images problem in atomic resolution imaging,” Phys. Rev. Lett. 86, 1534-1537 (2001). [CrossRef] [PubMed]
  21. M. Tegze and G. Faigel, “X-ray holography: theory and experiment,” J. Phys. Condens. Matter 13, 10613-10623(2001). [CrossRef]
  22. T. Latychevskaia and H. W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901 (2007). [CrossRef] [PubMed]
  23. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987-5995 (2004). [CrossRef] [PubMed]
  24. S. M. F. Raupach, H. J. Vössing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006). [CrossRef]
  25. T. Nakamura, K. Nitta, and O. Matoba, “Iterative algorithm of phase determination in digital holography for real-time recording of real object,” Appl. Opt. 46, 6849-6853 (2007). [CrossRef] [PubMed]
  26. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972).
  27. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27-29 (1978). [CrossRef] [PubMed]
  28. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  29. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4, 118-123 (1987). [CrossRef]
  30. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662-1669 (1998). [CrossRef]
  31. G. Liu and P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159-165 (1987). [CrossRef]
  32. G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423-433 (1993). [CrossRef]
  33. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, 2nd ed. (Kluwer, 1997), p. 54.
  34. J. W. Goodman, Fourier Optics (Roberts, 2005).
  35. T. R. Crimmins, “Phase retrieval for discrete functions with support constraints,” J. Opt. Soc. Am. A 4, 124-134 (1987). [CrossRef]
  36. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), p. 501.
  37. C. Magono and C. W. Lee, “Meteorological classification of natural snow crystals,” J. Fac. Sci. Hokkaido Univ. 7, 321-335(1966).
  38. T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771-778 (2002). [CrossRef]
  39. H. Meng, G. Pan, Y. Pu, and H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited