OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 321–327

Analysis of imaging properties of a microlens based on the method for a dyadic Green’s function

Shuwen Guo, Hanming Guo, and Songlin Zhuang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 321-327 (2009)
http://dx.doi.org/10.1364/AO.48.000321


View Full Text Article

Enhanced HTML    Acrobat PDF (557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dyadic Green’s function (DGF) is applied to examine the effect of focal shift in a spherical microlens with the variation of the numerical aperture for a given Fresnel number when a monochromatic plane wave with x linear polarization is incident on the microlens. By comparing the results based on the method for the vector Kirchhoff diffraction theory [ J. Opt. Soc. Am. A 22, 68–76 (2005)], the effect of the spherical aberration on focal shift in a microlens is evaluated, and the influences of NA as well as the spherical aberration on the transverse electric energy density distribution in the focal plane are also investigated. In contrast with other vector formulations of imaging theory, which mainly focus on the focal shift in an aplanatic system, the DGF method is more practical and effective to locate the principal maximum energy density along the normal axis and to study transverse electric energy density distribution, because the actual shape of a microlens and the effects of aberrations are considered.

© 2009 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3990) Optical devices : Micro-optical devices
(260.1960) Physical optics : Diffraction theory

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 11, 2008
Revised Manuscript: November 26, 2008
Manuscript Accepted: November 28, 2008
Published: January 7, 2009

Citation
Shuwen Guo, Hanming Guo, and Songlin Zhuang, "Analysis of imaging properties of a microlens based on the method for a dyadic Green's function," Appl. Opt. 48, 321-327 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-321

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited