OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 328–337

Backscatter suppression for underwater modulating retroreflector links using polarization discrimination

Linda Mullen, Brandon Cochenour, William Rabinovich, Rita Mahon, and John Muth  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 328-337 (2009)
http://dx.doi.org/10.1364/AO.48.000328


View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Free space optical links underwater have the potential to enable short range ( < 100 m ) high-bandwidth (megabits per second) data links that have a low probability of detection and interception. The use of a retroreflecting free space optical link in water has the added advantage of allowing much of the weight and power burden of the link to remain at one end. While modulating retroreflectors have been successfully implemented in above-water links, the underwater environment introduces new challenges. The focus of this paper is to address these challenges and to investigate techniques for minimizing their effect on the link performance.

© 2009 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(060.2605) Fiber optics and optical communications : Free-space optical communication
(010.4455) Atmospheric and oceanic optics : Oceanic propagation
(290.5855) Scattering : Scattering, polarization

ToC Category:
Scattering

History
Original Manuscript: September 19, 2008
Manuscript Accepted: November 7, 2008
Published: January 7, 2009

Citation
Linda Mullen, Brandon Cochenour, William Rabinovich, Rita Mahon, and John Muth, "Backscatter suppression for underwater modulating retroreflector links using polarization discrimination," Appl. Opt. 48, 328-337 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005). [CrossRef]
  2. M. P. Strand, “Underwater electro-optical system for mine identification,” Proc. SPIE 2496, 487-497 (1995). [CrossRef]
  3. A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005). [CrossRef]
  4. E. V. Miasinikov and T. V. Kondranin, “Effectiveness of the polarization discrimination technique for underwater viewing systems,” Proc. SPIE 1750, 433-442 (1992). [CrossRef]
  5. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937-3944 (1999). [CrossRef]
  6. J. G. Walker, P. Chang, and K. I. Hopcraft, “Visibility depth improvement in active polarization imaging in scattering media,” Appl. Opt. 39, 4933-4941 (2000). [CrossRef]
  7. A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Aiborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353-4364(2001). [CrossRef]
  8. A. Kouzoubov, M. J. Brennan, and J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873-3885 (1998). [CrossRef]
  9. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427-4439 (1984). [CrossRef] [PubMed]
  10. G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741-746 (1967). [CrossRef] [PubMed]
  11. G. M. Krekov, M. M. Krekova, and V. S. Sarmanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals,” Appl. Opt. 37, 1596-1601 (1998). [CrossRef]
  12. J. H. Churnside, V. V. Tatarskii, and J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured on a ship in the Southern California Bight,” Appl. Opt. 37, 3105-3112 (1998). [CrossRef]
  13. S. Q. Duntley, “Underwater lighting by submerged lasers and incandescent sources,” SIO Ref. 71-1 (Scripps Insitution of Oceanography Visibility Laboratory, University of California, San Diego, 1971).
  14. A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002). [CrossRef]
  15. G. D. Gilbert, “The effects of particle size on contrast improvement by polarization discrimination for underwater targets,” Appl. Opt. 9, 421-428 (1970). [CrossRef] [PubMed]
  16. C. J. Funk, S. B. Bryant, and P. J. Heckman, Jr., Handbook of Underwater Imaging System Design (Naval Undersea Center, 1972).
  17. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited