OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 2 — Jan. 10, 2009
  • pp: 343–354

Ultrathin four-reflection imager

Eric J. Tremblay, Ronald A. Stack, Rick L. Morrison, Jason H. Karp, and Joseph E. Ford  »View Author Affiliations


Applied Optics, Vol. 48, Issue 2, pp. 343-354 (2009)
http://dx.doi.org/10.1364/AO.48.000343


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design and experimental demonstration of an ultrathin four-reflection imager. The F / 1.15 prototype imager achieves a focal length of 18.6 mm in a track length of just 5.5 mm , providing a 17 ° field of view over 1.92 megapixels of a color image sensor with 3 μm pixels. We also present the design and experimental results of pupil-phase encoding and postprocessing, which were applied to extend the depth of field and compensate a small amount of axial chromatic aberration present in the four-reflection imager prototype.

© 2009 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(100.2000) Image processing : Digital image processing
(110.0110) Imaging systems : Imaging systems
(220.1920) Optical design and fabrication : Diamond machining

ToC Category:
Imaging Systems

History
Original Manuscript: September 22, 2008
Revised Manuscript: December 3, 2008
Manuscript Accepted: December 4, 2008
Published: January 7, 2009

Citation
Eric J. Tremblay, Ronald A. Stack, Rick L. Morrison, Jason H. Karp, and Joseph E. Ford, "Ultrathin four-reflection imager," Appl. Opt. 48, 343-354 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-2-343


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Smith, Modern Lens Design (McGraw-Hill, 2005), Chap. 18.
  2. D. Korsch, Reflective Optics (Academic, 1991).
  3. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultra-thin cameras using annular folded optics,” Appl. Opt. 46, 463-471 (2007). [CrossRef] [PubMed]
  4. J. Hall, “F-number, numerical aperture, and depth of focus,” in Encyclopedia of Optical Engineering (Marcel Dekker, 2003), pp. 556-559.
  5. E. R. Dowski, Jr. and W. T. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859-1866 (1995). [CrossRef] [PubMed]
  6. W. T. Cathey and E. Dowski, “A new paradigm for imaging systems,” Appl. Opt. 41, 6080-6092 (2002). [CrossRef] [PubMed]
  7. K. Kubala, E. Dowski, J. Kobus, and R. Brown, “Aberration and error invariant space telescope systems,” Proc. SPIE 5524, 54-65 (2004). [CrossRef]
  8. K. Kubala, E. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102-2108 (2003). [CrossRef] [PubMed]
  9. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875-877 (2001). [CrossRef]
  10. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1-12 (2003).
  11. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE 5559, 335-345 (2004). [CrossRef]
  12. E. J. Tremblay, J. Rutkowski, I. Tamayo, P. E. X. Silveira, R. A. Stack, R. L. Morrison, M. A. Neifeld, Y. Fainman, and J. E. Ford, “Relaxing the alignment and fabrication tolerances of thin annular folded imaging systems using wavefront coding,” Appl. Opt. 46, 6751-6758 (2007). [CrossRef] [PubMed]
  13. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901-2910 (2006). [CrossRef] [PubMed]
  14. V. N. Mahajan, “Imaging with obscured pupils,” Opt. Lett. 1, 128-129 (1977). [CrossRef] [PubMed]
  15. H. B. Wach, E. R. Dowski, Jr., and W. T. Cathey, “Control of chromatic focal shift through wavefront coding,” Appl. Opt. 37, 5359-5367 (1998). [CrossRef]
  16. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610-1620(2002). [CrossRef]
  17. G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Devices 50, 4-11 (2003). [CrossRef]
  18. M. Dirjish, “BSI technology flips digital imaging upside down,” http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=19160.
  19. http://www.ispoptics.com/.
  20. D. H. Kelly, “Spatial frequency, bandwidth, and resolution,” Appl. Opt. 4, 435-435 (1965). [CrossRef]
  21. T. Ang, Dictionary of Photography and Digital Imaging: the Essential Reference for the Modern Photographer (Watson-Guptill, 2002). [PubMed]
  22. R. Prescott, “Cassegrainian baffle design,” Appl. Opt. 7, 479-481 (1968). [CrossRef] [PubMed]
  23. C. Leinert and D. Klüppelberg, “Stray light suppression in optical space experiments,” Appl. Opt. 13, 556-564(1974). [CrossRef] [PubMed]
  24. G. Peterson, “Stray light calculation methods with optical ray trace software,” Proc. SPIE 3780, 132-137 (1999). [CrossRef]
  25. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112-147 (1998). [CrossRef]
  26. T. F. Coleman and Y. Li, “An interior, trust region approach for nonlinear minimization subject to bounds,” SIAM J. Optim. 6, 418-445 (1996). [CrossRef]
  27. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983). [CrossRef] [PubMed]
  28. H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice-Hall, 1977), Chap. 8, pp. 147-152.
  29. B. R. Frieden, “Image enhancement and restoration,” in Topics in Applied Physics, Vol. 6 of Picture Processing and Digital Filtering, T. S. Huang, ed. (Springer-Verlag, 1979), pp. 177-248.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited