Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display

Not Accessible

Your library or personal account may give you access

Abstract

We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume. We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm’s complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0.01° for a 2.66° cone angle produces acceptable reconstruction quality.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Computer generated hologram from point cloud using graphics processor

Rick H.-Y. Chen and Timothy D. Wilkinson
Appl. Opt. 48(36) 6841-6850 (2009)

Computer-generated hologram with occlusion effect using layer-based processing

Hao Zhang, Liangcai Cao, and Guofan Jin
Appl. Opt. 56(13) F138-F143 (2017)

Hybrid approach for fast occlusion processing in computer-generated hologram calculation

Antonin Gilles, Patrick Gioia, Rémi Cozot, and Luce Morin
Appl. Opt. 55(20) 5459-5470 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved