OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 21 — Jul. 20, 2009
  • pp: 4246–4255

Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display

Rick H.-Y. Chen and Timothy D. Wilkinson  »View Author Affiliations


Applied Optics, Vol. 48, Issue 21, pp. 4246-4255 (2009)
http://dx.doi.org/10.1364/AO.48.004246


View Full Text Article

Enhanced HTML    Acrobat PDF (782 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume. We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm’s complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0.01 ° for a 2.66 ° cone angle produces acceptable reconstruction quality.

© 2009 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.2870) Holography : Holographic display
(100.6890) Image processing : Three-dimensional image processing
(090.5694) Holography : Real-time holography

ToC Category:
Holography

History
Original Manuscript: March 30, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: June 24, 2009
Published: July 17, 2009

Citation
Rick H.-Y. Chen and Timothy D. Wilkinson, "Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display," Appl. Opt. 48, 4246-4255 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-21-4246


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. dissertation (MIT, 1994).
  2. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47, 5986-5995 (2008). [CrossRef]
  3. W. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42, 1560-1571 (2003). [CrossRef]
  4. B. Munjuluri, M. L. Huebschman, and H. R. Garner, “Rapid hologram updates for real-time volumetric information displays,” Appl. Opt. 44, 5076-5085 (2005). [CrossRef]
  5. M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation (Addison-Wesley Professional, 2005).
  6. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14, 603-608 (2006). [CrossRef]
  7. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14, 7636-7641(2006). [CrossRef]
  8. M. Janda, I. Hanak, and V. Skala, “HPO hologram synthesis for full-parallax reconstruction setup,” in proceedings of IEEE 3DTV Conference, 2007 (IEEE, 2007), pp. 1-4.
  9. D. Leseberg, “Computer-generated three-dimensional image holograms,” Appl. Opt. 31, 223-229 (1992). [CrossRef]
  10. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607-4614 (2005). [CrossRef]
  11. K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25-32(2005). [CrossRef]
  12. R. Ziegler, S. Croci, and M. Gross, “Lighting and occlusion in a wave-based framework,” Comput. Graph. Forum 27, 211-220(2008). [CrossRef]
  13. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer-generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47, 1567-1574 (2008). [CrossRef]
  14. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117-D127(2008). [CrossRef]
  15. M. Janda, I. Hanak, and L. Onural, “Hologram synthesis for photorealistic reconstruction,” J. Opt. Soc. Am. A 25, 3083-3096 (2008). [CrossRef]
  16. Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove Jr., “Real-time shader rendering of holographic stereograms,” Proc. SPIE 7233, 723302 (2009). [CrossRef]
  17. H. Kang, T. Yamaguchi, H. Yoshikawa, S.-C. Kim, and E.-S. Kim, “Acceleration method of computing a compensated phase-added stereogram on a graphic processing unit,” Appl. Opt. 47, 5784-5789 (2008). [CrossRef]
  18. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295-1301 (1964). [CrossRef]
  19. B. Saleh and M. Teich, Fundamentals of Photonics (Wiley, 1991), p. 117.
  20. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857-867 (1998). [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 2005), pp. 55-58.
  22. J. S. Underkoffler, “Occlusion processing and smooth surface shading for fully computed synthetic holography,” Proc. SPIE 3011, 53-60 (1997). [CrossRef]
  23. M. J. Bastiaans, “Application of the Wigner distribution function in optics,” in The Wigner Distribution--Theory and Applications in Signal Processing, W. Mecklenbräuker and F. Hlawatsch, eds. (Elsevier, 1997) pp. 375-426.
  24. A. Torre, Linear Ray and Wave Optics in Phase Space (Elsevier, 2005).
  25. S. Curtis, A. Oppenheim, and J. Lim, “Signal reconstruction from Fourier transform sign information,” IEEE Trans. Acoust. Speech Signal Process. 33, 643-657 (1985). [CrossRef]
  26. T. T. Huang and J. C. Sanz, “Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,” IEEE Trans. Acoust. Speech Signal Process. 36, 1292-1304(1988). [CrossRef]
  27. T. Mishina, M. Okui, and F. Okano, “Viewing-zone enlargement method for sampled hologram that uses high-order diffraction,” Appl. Opt. 41, 1489-1499 (2002). [CrossRef]
  28. C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27-41 (2004). [CrossRef]
  29. A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display with wide visual field and viewing zone,” Proc. SPIE 6016, 60160Y (2005). [CrossRef]
  30. Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47, D6-D11 (2008). [CrossRef]
  31. R. H.-Y. Chen and T. D. Wilkinson, “Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light,” in proceedings of IEEE 3DTV Conference: The True Vision--Capture, Transmission and Display of 3D Video, 2009 (IEEE, 2009), pp. 1-4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited