OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4365–4369

Modeling bending losses of optical nanofibers or nanowires

Huakang Yu, Shanshan Wang, Jian Fu, Min Qiu, Yuhang Li, Fuxing Gu, and Limin Tong  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. 4365-4369 (2009)
http://dx.doi.org/10.1364/AO.48.004365


View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bending losses of nanofibers or nanowires with circular 90 ° bends are simulated using a three- dimensional finite-difference time-domain (3D-FDTD) method. Dependences of bending losses on wavelength and polarization of guided light are investigated, as well as the diameters, refractive indices, and bending radii of nanowires. The acceptable bending losses ( 1 dB / 90 ° ) predicted in glass, polymer, and semiconductor nanowires with bending radii down to micrometer level may offer valuable references for assembling highly compact photonic integrated circuits or devices with optical nanowires.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 20, 2009
Revised Manuscript: June 20, 2009
Manuscript Accepted: July 10, 2009
Published: July 22, 2009

Citation
Huakang Yu, Shanshan Wang, Jian Fu, Min Qiu, Yuhang Li, Fuxing Gu, and Limin Tong, "Modeling bending losses of optical nanofibers or nanowires," Appl. Opt. 48, 4365-4369 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-4365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonics devices,” Nano Lett. 5, 259-262(2005). [CrossRef] [PubMed]
  2. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005). [CrossRef]
  3. Y. H. Li and L. M. Tong, “Mach--Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33, 303-305 (2008). [CrossRef] [PubMed]
  4. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006). [CrossRef] [PubMed]
  5. A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208-211 (1998). [CrossRef] [PubMed]
  6. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  7. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006). [CrossRef] [PubMed]
  8. S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers,” Nano Lett. 4, 1931-1937 (2004). [CrossRef]
  9. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757-2761 (2008). [CrossRef] [PubMed]
  10. X. B. Xing, H. Zhu, Y. Q. Wang, and B. J. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8, 2839-2843 (2008). [CrossRef] [PubMed]
  11. M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83-122(2004). [CrossRef]
  12. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269-1273 (2004). [CrossRef] [PubMed]
  13. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216-220 (1976). [CrossRef]
  14. C. Vassallo, “Perturbation of an LP mode of an optical fiber by a quasi-degenerate field: a simple formula,” Opt. Quantum Electron. 17, 201-205 (1985). [CrossRef]
  15. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992). [CrossRef]
  16. D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957-2961 (1993). [CrossRef]
  17. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997). [CrossRef]
  18. Q. Wang, G. Farrell, and T. Freir, “Theoretical and experimental investigations of macro-bend losses for standard single mode fibers,” Opt. Express 13, 4476-4484 (2005). [CrossRef] [PubMed]
  19. Q. Wang, G. Rajan, P. F. Wang, and G. Frarell, “Polarization dependence of bend loss for a standard single mode fiber,” Opt. Express 15, 4909-4920 (2007). [CrossRef] [PubMed]
  20. C. J. Zhao, L. Shen, Y. X. Ye, Z. X. Tang, D. Y. Fan, G. H. Chen, and W. Mu, “Design guidelines and characteristics of a four-layer large flattened mode fiber,” Chin. Opt. Lett. 5, S86-S88(2007).
  21. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303-2316 (2004). [CrossRef] [PubMed]
  22. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521-3531(2004). [CrossRef] [PubMed]
  23. M. Heiblum and J. H. Harris, “Analysis of curved waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75-83 (1975). [CrossRef]
  24. D. X. Dai, Y. C. Shi, and S. L. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt. 45, 4941-4946 (2006). [CrossRef] [PubMed]
  25. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express 14, 11128-11141 (2006). [CrossRef] [PubMed]
  26. Z. Ye, X. H. Hu, M. Li, K. M. Ho, and P. D. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett. 89, 241108 (2006). [CrossRef]
  27. M. Rivera, “A finite-difference BPM analysis of dielectric wave-guides,” J. Lightwave Technol. 13, 233-238 (1995). [CrossRef]
  28. W. W. Liu, C.-L. Xu, T. Hirono, K. Yokoyama, and W. P. Huang, “Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations,” J. Lightwave Technol. 16, 2006(1998). [CrossRef]
  29. J. H. Greene and A. Taflove, “Intial three-dimensional finite-difference time-domain phenomenology study of the transient response of a large vertically coupled photonic racetrack,” Opt. Lett. 28, 1733-1735 (2003). [CrossRef] [PubMed]
  30. A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide,” J. Lightwave Technol. 22, 520-525 (2004). [CrossRef]
  31. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  32. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001). [PubMed]
  33. K. J. Huang, S. Y. Yang, and L. M. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429-1434 (2007). [CrossRef] [PubMed]
  34. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16, 8887-8895 (2008). [CrossRef] [PubMed]
  35. F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445-455 (2004). [CrossRef]
  36. S. D. Gedney, “An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630-1639 (1996). [CrossRef]
  37. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited