OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: 4414–4423

Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO 2 photodissociation techniques in an underexpanded jet flowfield

Andrea G. Hsu, Ravi Srinivasan, Rodney D. W. Bowersox, and Simon W. North  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. 4414-4423 (2009)
http://dx.doi.org/10.1364/AO.48.004414


View Full Text Article

Enhanced HTML    Acrobat PDF (1284 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the application of molecular tagging velocimetry (MTV) toward two-component velocimetry as demonstrated in an underexpanded free jet flowfield. Two variants of the MTV technique are presented: 1) electronic excitation of seeded nitric oxide (NO) with gated fluorescence imaging (fluorescence lifetime) and 2) photodissociation of seeded NO 2 followed by NO fluorescence imaging ( NO 2 photodissociation). The seeded NO fluorescence lifetime technique is advantageous in low-quenching, high-velocity flowfields, while the photodissociation technique is useful in high-quenching environments, and either high- or low-velocity flowfields due to long lifetime of the NO photoproduct. Both techniques are viable for single-shot measurements, with determined root mean squared results for streamwise and radial velocities of 5 % . This study represents the first known application of MTV utilizing either the fluorescence lifetime or the photodissociation technique toward two-component velocity mapping in a gaseous flowfield. Methods for increasing the spatial resolution to be comparable to particle-based tracking techniques are discussed.

© 2009 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(100.2960) Image processing : Image analysis
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(300.2530) Spectroscopy : Fluorescence, laser-induced
(330.6130) Vision, color, and visual optics : Spatial resolution
(100.4999) Image processing : Pattern recognition, target tracking

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 6, 2009
Manuscript Accepted: June 26, 2009
Published: July 23, 2009

Citation
Andrea G. Hsu, Ravi Srinivasan, Rodney D. W. Bowersox, and Simon W. North, "Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield," Appl. Opt. 48, 4414-4423 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-4414


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Huffman and G. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” in 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2009-1265 (AIAA, 2009).
  2. D. G. Bohl and M. M. Koochesfahani, “Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core,” Phys. Fluids 16, 4185-4191 (2004). [CrossRef]
  3. H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269-1281(2006). [CrossRef]
  4. H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry for the simultaneous measurements of flow velocity and temperature fields,” n 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-41 (AIAA, 2006).
  5. R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755-757 (1996). [CrossRef] [PubMed]
  6. L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004). [CrossRef]
  7. R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).
  8. J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nm H2O photodissociation,” Appl. Opt. 38, 6912-6917 (1999). [CrossRef]
  9. R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993). [CrossRef]
  10. P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003). [CrossRef]
  11. W. P. N. van der Laan, R. A. L. Tolboom, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an Object in supersonic flow,” Exp. Fluids 34, 531-533 (2003).
  12. S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).
  13. W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002). [CrossRef]
  14. W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).
  15. M. M. IsmailovH. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006). [CrossRef]
  16. S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005). [CrossRef]
  17. C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15-20(1999). [CrossRef]
  18. S. Kruger and G. Grunefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509-512 (1999). [CrossRef]
  19. M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993). [CrossRef]
  20. C. Brooks, G. Hancock, and M. Saunders, “Dependence of the nascent vibrational distribution of NO(v) on the photolysis wavelength of NO2 in the range λ=266-327 nm measured by time-resolved Fourier transform infrared emission,” Phys. Chem. Chem. Phys. 9, 5232-5240 (2007). [CrossRef] [PubMed]
  21. J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994). [CrossRef]
  22. A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. (to be published).
  23. A. Hsu, “Application of advanced laser and optical diagnostics towards non-thermochemical equilibrium systems,” (Ph.D. dissertation (Texas A&M University, 2009).
  24. M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006). [CrossRef]
  25. B. Stier and M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297-304 (1999). [CrossRef]
  26. M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004). [CrossRef]
  27. C. D. Donaldson and R. S. Snedeker, “A study of free jet impingement. Part 1. Mean properties of free and impinging jets,” J. Fluid Mech. 45, 281-319 (1971). [CrossRef]
  28. J. A. Wilkes, C. E. Glass, P. M. Danehy, and R. J. Nowak, “Fluorescence imaging of underexpanded jets and comparison with CFD,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-910 (AIAA, 2006).
  29. W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt 60: A parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-786 (AIAA, 1999).
  30. F. R. Menter, “Zonal two equation turbulence model predictions,” in AIAA 24th Fluid Dynamics Conference, AIAA 93-2906 (AIAA, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited