OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 22 — Aug. 1, 2009
  • pp: E1–E12

Wavelength-compensated photonic multibeam-forming system for two-dimensional wideband radio-frequency phased-array antennas

Lu Gao and Kelvin H. Wagner  »View Author Affiliations


Applied Optics, Vol. 48, Issue 22, pp. E1-E12 (2009)
http://dx.doi.org/10.1364/AO.48.0000E1


View Full Text Article

Enhanced HTML    Acrobat PDF (1405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Traditional lens-based photonic Fourier beam-forming systems can be used to steer multiple beams for narrowband radio-frequency (RF) phased-array antennas. For wideband RF phased-array antennas, such Fourier beam-forming systems suffer from frequency-dependent beam steering, known as beam squint. We present a novel squint-free Fourier-based photonic multibeam-forming system for wideband two-dimensional RF phased-array antennas using a lens and frequency-mapped modulation. In this new beam-forming system, we modulate the receiving wideband RF signals onto a broadband light source in a frequency-mapped manner by a traveling-wave tunable filter at each antenna element. These modulated signals are launched in a miniaturized topology of the RF antenna array, and the wavelength-scaling factor in the lens Fourier transform exactly compensates the frequency dependence of beam steering. Heterodyne detection at the Fourier plane between the focused modulated multicolor spots and the broadband laser reference beams from the same light source recovers the received RF signals. An analysis with numerical simulations and then demonstrated with preliminary experimental results of this beam-forming system is presented.

© 2009 Optical Society of America

OCIS Codes
(070.1060) Fourier optics and signal processing : Acousto-optical signal processing
(280.4750) Remote sensing and sensors : Optical processing of radar images
(280.5110) Remote sensing and sensors : Phased-array radar
(320.7120) Ultrafast optics : Ultrafast phenomena

History
Original Manuscript: December 1, 2008
Revised Manuscript: May 3, 2009
Manuscript Accepted: May 13, 2009
Published: June 10, 2009

Citation
Lu Gao and Kelvin H. Wagner, "Wavelength-compensated photonic multibeam-forming system for two-dimensional wideband radio-frequency phased-array antennas," Appl. Opt. 48, E1-E12 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-22-E1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Allen, “A theoretical limitation on the formation of lossless multiple beams in linear arrays,” IRE Trans. Antennas Propag. AP-9, 350-352 (1961). [CrossRef]
  2. L. Stark, “Theory of phased arrays,” Proc. IEEE 62, 1661(1974). [CrossRef]
  3. A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased-array radar technology,” Lincoln Lab. J. 12, 321-340 (2000).
  4. H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, 1994).
  5. P. M. Blanchard, A. H. Greenaway, A. R. Harvey, and K. Webster, “Coherent optical beam forming with passive millimeter-wave arrays,” J. Lightwave Technol. 17, 418-425 (1999). [CrossRef]
  6. G. M. Morris, “Diffraction theory for an achromatic Fourier transformation,” Appl. Opt. 20, 2017-2025 (1981). [CrossRef] [PubMed]
  7. G. M. Morris and N. George, “Frequency-plane filtering with an achromatic optical transform,” Opt. Lett. 5, 446-448 (1980). [CrossRef] [PubMed]
  8. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. Shaw, “Optical fiber delay-line signal-processing,” IEEE Trans. Microwave Theory Tech. 33, 193-210 (1985). [CrossRef]
  9. R. A. Sparks, N. Slawsby, J. Prince, and J. Munro, “Experimental demonstration of a fiber optic Rotman beamformer,” in International Topical Meeting on Microwave Photonics, 1998 (IEEE, 1998), pp. 127-130.
  10. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395-7397 (1992). [CrossRef] [PubMed]
  11. H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” Photon.Technol. Lett. 9, 241-243 (1997). [CrossRef]
  12. D. T. K. Tong and M. C. Wu, “Programmable dispersion matrix using Bragg fibre grating for optically controlled phased array antennas,” Electron. Lett. 32, 1532-1533 (1996). [CrossRef]
  13. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” Photon. Technol. Lett. 5, 1347-1349 (1993). [CrossRef]
  14. L. H. Gesell and T. M. Turpin, “True time delay beam forming using acousto-optics,” Proc. SPIE 1703, 592-602 (1992). [CrossRef]
  15. M. Kondo, K. Komatsu, Y. Ohta, S. Suzuki, K. Nagashima, and H. Goto, “High-speed optical time switch with integrated optical 1×4 switches and single-polarization fiber delay lines,” in 4th International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics and Communications Engineers, 1983), p. 04967.
  16. M. Arm, L. Lambert, I. Weissman, and L. Slobodin, “Optical correlation technique for radar pulse compression,” Proc. IEEE 52, 842-842 (1964). [CrossRef]
  17. L. Gao, S. Herriot, and K. H. Wagner, “A novel approach to rf photonic signal processing using an ultrafast laser comb modulated by traveling-wave tunable filters,” IEEE J. Sel. Top. Quantum Electron. 12, 315-329 (2006). [CrossRef]
  18. B. Braker and K. Wagner, “Self calibrated optical imaging of sparse rf arrays,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM (Optical Society of America, 2007), paper CTuB7. [PubMed]
  19. S. Kim, L. Gao, K. Wagner, R. T. Weverka, and R. McLeod, “Acousto-optic tunable filter using phased-array transducer with linearized rf to optical frequency mapping,” Proc. SPIE 5953, 59530M (2005). [CrossRef]
  20. K. H. Wagner, B. Braker, M. Colice, F. Schlottau, and R. T. Weverka, “Spectrally-compensated, squint-free, multiple-beam forming system for broadband rf antenna arrays,” in Proceedings International Commission for Optics, Optics in Computing (European Optical Society, 2004).
  21. L. Gao, S. Herriot, and K. H. Wagner, “Sluggish light for radio-frequency true-time-delay applications with a large time-bandwidth product,” Opt. Lett. 31, 3360-3362 (2006). [CrossRef] [PubMed]
  22. I. C. Chang, “Noncollinear acousto-optical filter with large angular aperture,” Appl. Phys. Lett. 25, 370-372 (1974). [CrossRef]
  23. C. N. Pannell, H. J. Gnewuch, and J. Ward, “Some new developments in acousto-optic and electro-optic devices,” Proc. SPIE 97-108 (2004). [CrossRef]
  24. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245-249 (1997). [CrossRef]
  25. Z. Bor and B. Rácz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54, 165-170 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited