OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 23 — Aug. 10, 2009
  • pp: 4514–4518

Optical channel waveguide in Nd/Ce codoped YAG laser crystal produced by carbon ion implantation

Yan-Xia Kong, Feng Chen, Daniel Jaque, Qing-Ming Lu, and Hong-Ji Ma  »View Author Affiliations


Applied Optics, Vol. 48, Issue 23, pp. 4514-4518 (2009)
http://dx.doi.org/10.1364/AO.48.004514


View Full Text Article

Enhanced HTML    Acrobat PDF (427 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical channel waveguides in Nd/Ce codoped YAG laser crystal have been fabricated by using mask-assisted carbon ion implantation. The measured waveguide mode distributions were in good agreement with the calculated modal profiles, which implies the feasibility of designable devices. After thermal annealing treatment at 260 ° C for 30 min in air, the propagation loss of the waveguide was reduced down to 2 dB / cm at a wavelength of 632.8 nm . The microluminescence spectra of the waveguides show that the fluorescence properties of both Ce and Nd ions (including the energy transfer between them) are not significantly affected by the waveguide formation processing, which indicates a fairly good potential for further laser actions in a compact device.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3380) Materials : Laser materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Optical Devices

History
Original Manuscript: May 28, 2009
Manuscript Accepted: July 3, 2009
Published: August 3, 2009

Citation
Yan-Xia Kong, Feng Chen, Daniel Jaque, Qing-Ming Lu, and Hong-Ji Ma, "Optical channel waveguide in Nd/Ce codoped YAG laser crystal produced by carbon ion implantation," Appl. Opt. 48, 4514-4518 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-23-4514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001). [CrossRef]
  2. E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004). [CrossRef]
  3. J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008). [CrossRef]
  4. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150(1998). [CrossRef]
  5. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2007).
  6. J. I. Mackenzie, “Dielectic solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626-637 (2007). [CrossRef]
  7. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008). [CrossRef]
  8. J. Lamela, A. Rodenas, D. Jaque, and F. Jaque, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express 15, 3285-3290 (2007). [CrossRef] [PubMed]
  9. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried `waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248-2250 (2005). [CrossRef] [PubMed]
  10. G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008). [CrossRef]
  11. P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003). [CrossRef]
  12. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, 8513-8520 (2007). [CrossRef] [PubMed]
  13. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express 15, 17874-17880 (2007). [CrossRef] [PubMed]
  14. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991). [CrossRef]
  15. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994). [CrossRef]
  16. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007). [CrossRef]
  17. F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34, 28-30 (2009). [CrossRef]
  18. Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008). [CrossRef]
  19. M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005). [CrossRef]
  20. M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003). [CrossRef]
  21. Y. Tan and F. Chen, “Experimental observation and numerical simulation of guided modes in Nd:YLiF4 channel waveguides produced by carbon ion implantation,” Phys. Status Solidi RRL 1, 277-229 (2007). [CrossRef]
  22. F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008). [CrossRef]
  23. M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009). [CrossRef]
  24. J. F. Ziegler, Computer code SRIM 2006, http://www.srim.org.
  25. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-142(1986). [CrossRef]
  26. Rsoft Design Group, Computer software BeamPROP version 8.0, http://www.rsoftdesign.com.
  27. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147 (1985). [CrossRef]
  28. Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited