OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 23 — Aug. 10, 2009
  • pp: 4610–4615

Refractive index of dark-adapted bacteriorhodopsin and tris(hydroxymethyl)aminomethane buffer between 390 and 880 nm

Zsuzsanna Heiner and Károly Osvay  »View Author Affiliations


Applied Optics, Vol. 48, Issue 23, pp. 4610-4615 (2009)
http://dx.doi.org/10.1364/AO.48.004610


View Full Text Article

Enhanced HTML    Acrobat PDF (744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The refractivity of wild-type bacteriorhodopsin ( bR WT ) suspended in tris(hydroxymethyl)aminomethane (TRIS) buffer has been measured in the spectral range of 390 840 nm by the method of angle of minimal deviation with the use of a hollow glass prism. The refractive indices of pure bR WT as well as of TRIS buffer have been determined from the concentration dependent refraction values. Sellmeier-type dispersion equations have been fitted for both the TRIS buffer and pure bR WT .

© 2009 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.1435) Materials : Biomaterials

ToC Category:
Materials

History
Original Manuscript: April 29, 2009
Revised Manuscript: July 10, 2009
Manuscript Accepted: July 25, 2009
Published: August 4, 2009

Citation
Zsuzsanna Heiner and Károly Osvay, "Refractive index of dark-adapted bacteriorhodopsin and tris(hydroxymethyl)aminomethane buffer between 390 and 880 nm," Appl. Opt. 48, 4610-4615 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-23-4610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Luecke, “Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump,” Biochim. Biophys. Acta 1460, 133-156 (2000). [CrossRef]
  2. L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006). [CrossRef]
  3. K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).
  4. B. Yao, M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, and N. Hampp, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30, 3060-3062 (2005). [CrossRef]
  5. J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, “Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film,” Opt. Lett. 21, 1499-1501 (1996). [CrossRef]
  6. E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).
  7. D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype bRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788-7792 (1992). [CrossRef]
  8. C. Sifuentes, Y. O. Barmenkov, and A. V. Kiryanov, “The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques,” Opt. Mater. 19, 433-442 (2002).
  9. A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000). [CrossRef]
  10. K. Clays, S. Van Elshocht, M. Chi, E. Lepoudre, and A. Persoons, “Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal,” J. Opt. Soc. Am. B 18, 1474-1483 (2001). [CrossRef]
  11. G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43, 47-51 (1983). [CrossRef]
  12. P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002). [CrossRef]
  13. Q. W. Song, C. P. Zhang, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775-777 (1993). [CrossRef]
  14. O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117-1119 (1990) [CrossRef]
  15. A. Dér, P. Hargittai, and J. Simon, “Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel,” J. Biochem. Biophys. Methods 10, 295-300 (1985). [CrossRef]
  16. P. Mitchell, “Vectorial chemistry and molecular mechanics of chemiosmotic coupling: power transmission by proticity,” Biochem. Soc. Trans. 4, 399-430 (1976).
  17. Y. Huang, S.-T. Wu, and Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895-906 (2004). [CrossRef]
  18. R. K. Banyal and B. R. Prasad, “High-contrast, all-optical switching in bacteriorhodopsin films,” Appl. Opt. 44, 5497-5503 (2005). [CrossRef]
  19. A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide light mode spectroscopy,” Biosens. Bioelectron. 21, 1606-1612 (2006). [CrossRef]
  20. C. P. Zhang, Q. W. Song, C. Y. Ku, R. B. Gross, and R. R. Birge, “Determination of the refractive index of a bacteriorhodopsin film,” Opt. Lett. 19, 1409-1411 (1994). [CrossRef]
  21. Q. W. Son, C.-Y. Ku, C. Zhang, R. B. Gross, R. R. Birge, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B 12, 797-803(1995). [CrossRef]
  22. I. Z. Kozma, P. Krok, and E. Riedle, “Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet,” J. Opt. Soc. Am. B 22, 1479-1485 (2005). [CrossRef]
  23. M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,” Appl. Opt. 45, 2838-2842 (2006). [CrossRef]
  24. L. E. Nielsen, Predicting the Properties of Mixture (Dekker, 1978).
  25. D. Tentori and J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160-168(1990).
  26. E. Korchemskaya, D. Stepanchikov, and T. Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).
  27. G. Chen, Y. Yuan, C. Zhang, G. Yang, J. G. Tian, T. Xu, and Q. W. Song, “All-optical time-delay relay based on a bacteriorhodopsin film,” Opt. Lett. 31, 1531-1533 (2006). [CrossRef]
  28. C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390-9395 (1997). [CrossRef]
  29. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47, 4856-4863 (2008). [CrossRef]
  30. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811-3820 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited