Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Split step solution in the iteration of the beam propagation method for analyzing Bragg gratings

Not Accessible

Your library or personal account may give you access

Abstract

The split step method is applied to the iteration of the beam propagation method for analyzing the reflection of a laser beam by a volume Bragg grating. The application of the split step method is made possible by a way to properly treat the grating coupling terms in the paraxial wave equations. This method is demonstrated to be accurate in addition to efficient and robust. After this modification, the iteration of the beam propagation method is suitable for analyzing finite beams in volume Bragg gratings, for which the grating strength might be large. It is also suitable for analyzing Bragg gratings with nonuniform grating structures.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.