OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 25 — Sep. 1, 2009
  • pp: F11–F17

High-speed characteristics of vertical cavity surface emitting lasers and resonant-cavity-enhanced photodetectors based on intracavity-contacted structure

Y. M. Song, B. K. Jeong, B. H. Na, K. S. Chang, J. S. Yu, and Y. T. Lee  »View Author Affiliations


Applied Optics, Vol. 48, Issue 25, pp. F11-F17 (2009)
http://dx.doi.org/10.1364/AO.48.000F11


View Full Text Article

Enhanced HTML    Acrobat PDF (1057 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated vertical cavity surface emitting lasers (VCSELs) and resonant-cavity-enhanced photodetectors (RCE-PDs) with GaAs/AlGaAs distributed Bragg reflectors (DBRs), operating at λ 980 nm , based on an intracavity-contacted structure. The top-DBR mesa diameter of the VCSELs was optimized to 18 μm in terms of slope efficiency, differential series resistance, and 3 dB bandwidth. For VCSELs with an oxide aperture of 4.5 μm and a top-DBR mesa diameter of 18 μm , the threshold current was about 1.2 mA , exhibiting maximum output power of 3.49 mW (at 20 ° C ) with good uniformity. The effect of the overetching in the outermost layer of RCE-PDs on the device performance was also investigated. For RCE-PDs based on the VCSEL structure, a peak responsivity of 0.44 A/W (at λ 979.7 nm ) with a spectral width of 3 nm and a dark current of 68 pA under a bias voltage of 5 V at 20 ° C was obtained. The maximum 3 dB bandwidths of 11.5 GHz with a modulation current efficiency factor of 5.6 GHz / mA 1 / 2 at 7 mA and 9 GHz at 7 V were achieved for VCSELs and RCE-PDs, respectively.

© 2009 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(200.4650) Optics in computing : Optical interconnects
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
High Speed Compontents and Optical Communications

History
Original Manuscript: February 2, 2009
Revised Manuscript: May 1, 2009
Manuscript Accepted: May 8, 2009
Published: May 29, 2009

Citation
Y. M. Song, B. K. Jeong, B. H. Na, K. S. Chang, J. S. Yu, and Y. T. Lee, "High-speed characteristics of vertical cavity surface emitting lasers and resonant-cavity-enhanced photodetectors based on intracavity-contacted structure," Appl. Opt. 48, F11-F17 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-25-F11


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000). [CrossRef]
  2. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005). [CrossRef]
  3. E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).
  4. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600-4615 (2006). [CrossRef]
  5. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006). [CrossRef]
  6. D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritters, J. Jewell, L. A. Graham, K. Schrödinger, A. Schild, and H. Rein, “120 Gb/s VCSEL-based parallel-optical interconnect and custom 120 Gb/s testing station,” J. Lightwave Technol. 22, 2200-2212 (2004). [CrossRef]
  7. R. Szweda, “VCSEL applications diversify as technology matures,” III-V Rev. 19, 34-38 (2006).
  8. I. Chung and Y. T. Lee, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46-48 (2006). [CrossRef]
  9. A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999). [CrossRef]
  10. Y. Zhou, J. Cheng, and A. A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasiplanar VCSEL and resonant photodetector array with strained InGaAs quantum wells,” IEEE Photon. Technol. Lett. 12, 122-124 (2000). [CrossRef]
  11. D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999). [CrossRef]
  12. T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999). [CrossRef]
  13. J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994). [CrossRef]
  14. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000). [CrossRef]
  15. Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press). [CrossRef]
  16. K. S. Chang, Y. M. Song, and Y. T. Lee, “Stable single-mode operation of VCSELs with a mode selective aperture,” Appl. Phys. B 89, 231-234 (2007). [CrossRef]
  17. Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009). [CrossRef]
  18. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  19. M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001). [CrossRef]
  20. M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited