OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 25 — Sep. 1, 2009
  • pp: F68–F75

Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects

Chin-Hui Chen, Jonathan Klamkin, Steven C. Nicholes, Leif A. Johansson, John E. Bowers, and Larry A. Coldren  »View Author Affiliations


Applied Optics, Vol. 48, Issue 25, pp. F68-F75 (2009)
http://dx.doi.org/10.1364/AO.48.000F68


View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10 μm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters

ToC Category:
Photonic Integration

History
Original Manuscript: February 2, 2009
Revised Manuscript: May 12, 2009
Manuscript Accepted: May 20, 2009
Published: June 24, 2009

Citation
Chin-Hui Chen, Jonathan Klamkin, Steven C. Nicholes, Leif A. Johansson, John E. Bowers, and Larry A. Coldren, "Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects," Appl. Opt. 48, F68-F75 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-25-F68


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).
  2. L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994). [CrossRef]
  3. Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000). [CrossRef]
  4. C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994). [CrossRef]
  5. D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999). [CrossRef]
  6. C.-C. Chen, H.-D. Chien, and P.-G. Luan, “Photonic crystal beam splitters,” Appl. Opt. 43, 6187-6190 (2004). [CrossRef] [PubMed]
  7. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688-702(2003). [CrossRef]
  8. Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287-9292 (2007). [CrossRef] [PubMed]
  9. P. Pottier, S. Mastroiacovo, and R. M. De La Rue, “Power and polarization beam-splitters, mirrors, and integrated interferometers based on air-hole photonic crystals and lateral large index-contrast waveguides,” Opt. Express 14, 5617-5633 (2006). [CrossRef] [PubMed]
  10. Y. Lin, N. Rahmanian, S. Kim, and G. Nordin, “Fabrication of compact polymer waveguide devices using air-trench bends and splitters,” in SoutheastCon 2008 (IEEE, 2008), pp. 421-426.
  11. Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007). [CrossRef]
  12. C.-H. Chen, M. Sysak, J. Klamkin, and L. Coldren, “Ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Lasers and Electro-Optics Society, LEOS 2007, the Twentieth Annual Meeting of the IEEE (IEEE, 2007), pp. 784-785. [CrossRef]
  13. C.-H. Chen, J. Klamkin, L. A. Johansson, and L. A. Coldren, “Design and implementation of ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (Optical Society of America, 2008), pp. 1-3.
  14. M. R. Wang, “Analysis and observation of finite beam Bragg diffraction by a thick planar phase grating,” Appl. Opt. 35, 582-592 (1996). [CrossRef] [PubMed]
  15. J. Ctyroky, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998). [CrossRef]
  16. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466-1468 (2001). [CrossRef]
  17. J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997). [CrossRef]
  18. S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron. 27, 2086-2090 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited