OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5040–5049

Plasmonics enhancement of a luminescent or Raman-active layer in a multilayered metallic nanoshell

Stephen J. Norton and Tuan Vo-Dinh  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5040-5049 (2009)
http://dx.doi.org/10.1364/AO.48.005040


View Full Text Article

Enhanced HTML    Acrobat PDF (878 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Expressions for the enhancement of the far-field scattering cross section of a luminescent or Raman- active compound contained within a multilayered nanosphere are derived, where the active compound resides between an outer metallic shell and a metallic core. The quasi-static approximation is assumed for silver and gold particles using a Lorentz–Drude model of the dielectric function. An attempt has also been made to account for the effect of electron scattering from the boundaries of the shell on the enhancement calculation.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(290.5860) Scattering : Scattering, Raman
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 21, 2009
Revised Manuscript: June 25, 2009
Manuscript Accepted: July 11, 2009
Published: September 10, 2009

Citation
Stephen J. Norton and Tuan Vo-Dinh, "Plasmonics enhancement of a luminescent or Raman-active layer in a multilayered metallic nanoshell," Appl. Opt. 48, 5040-5049 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Vo-Dinh, M. Y. K. Hiromoto, G. M. Begun, and R. L. Moody, “Surface-enhanced Raman spectrometry for trace organic-analysis,” Anal. Chem. 56, 1667-1670 (1984). [CrossRef]
  2. T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends Anal. Chem. 17, 557-570(1998). [CrossRef]
  3. H. N. Wang and T. Vo-Dinh, “Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes,” Nanotechnology 20, 065101 (2009). [CrossRef] [PubMed]
  4. S. J. Norton and T. Vo-Dinh, “Plasmonic resonances of nanoshells of spheroidal shape,” IEEE Trans. Nanotechnol. 6, 627-638 (2007). [CrossRef]
  5. S. J. Norton and T. Vo-Dinh, “Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids,” J. Nanophoton. 2, 029501 (2008). [CrossRef]
  6. S. J. Norton and T. Vo-Dinh, “Optical response of linear chains of metal nanospheres and nanospheroids,” J. Opt. Soc. Am. A 25, 2767-2775 (2008). [CrossRef]
  7. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951). [CrossRef]
  8. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and H. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999). [CrossRef]
  9. R. D. Averitt, S. L. Westcott, and N. J. Nalas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999). [CrossRef]
  10. J. Zhu, Y. Wang, L. Huang, and Y. Lu, “Resonance light scattering characters of core-shell structure of Au-Ag nanoparticles,” Phys. Lett. A 323, 455-459 (2004). [CrossRef]
  11. C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4, 1323-1327 (2004). [CrossRef]
  12. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307-323 (1969). [CrossRef]
  13. M. Quinten, “Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV,” Z. Phys. B 101, 211-217 (1996). [CrossRef]
  14. B. Khlebtsov and N. Khlebtsov, “Ultrasharp light-scattering resonances of structured nanospheres: effects of size-dependent dielectric functions,” J. Biomed. Opt. 11, 044002(2006). [CrossRef] [PubMed]
  15. A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641-10652 (2008). [CrossRef]
  16. D.-S. Wang and M. Kerker, “Absorption and luminescence of dye-coated silver and gold particles,” Phys. Rev. B 25, 2433-2449 (1982). [CrossRef]
  17. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phy. Rev. Lett. 96, 113002 (2006). [CrossRef]
  18. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375(2006). [CrossRef]
  19. Even if the polarizabilities of the individual molecules are not isotropic, an effective isotropic polarizability will result if the molecules are randomly oriented.
  20. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975), p. 102.
  21. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975), p. 99.
  22. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975), pp. 136-137.
  23. A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering (Prentice-Hall, 1991), pp. 280-291.
  24. The constants for silver are Δϵk=[1759.47,135.34,258.19,22.90,1749.06,11756.18], ak=[1,1,1,1,1,1], bk=[0.2431,19.681,2.289,0.3292,4.6391,12.25], and ck=[0,17.079,515.022,1718.357,2116.092,10559.42], and for gold are Δϵk=[1589.52,50.20,20.92,148.49,1256.97,9169], ak=[1,1,1,1,1,1], bk=[0.268,1.221,1.747,4.406,12.63,11.21], and ck=[0,4.42,17.67,226.10,475.14,4550.77].
  25. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  26. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).
  27. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787-796 (1989). [CrossRef]
  28. R. J. Jhu, J. Wang, and G. F. Jin, “Mie scattering calculation by FDTD employing a modified Debye model for gold material,” Optik (Jena) 116, 419-422 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited