OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5131–5137

Gain dispersion for dissipative soliton generation in all-normal-dispersion fiber lasers

L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5131-5137 (2009)
http://dx.doi.org/10.1364/AO.48.005131


View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Properties of dissipative solitons generated in all-normal-dispersion fiber lasers through the gain dispersion effect are numerically studied by using a pulse-tracing technique that considers interaction between gain saturation, gain dispersion, cavity dispersion, fiber Kerr nonlinearity, and cavity boundary conditions. The numerical results qualitatively match with experimental observations and show that the finite gain bandwidth, together with the pump power, determines the properties of the generated dissipative solitons, which further dictates the performance of the pulse compression.

© 2009 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.7090) Lasers and laser optics : Ultrafast lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 17, 2009
Revised Manuscript: August 19, 2009
Manuscript Accepted: August 26, 2009
Published: September 10, 2009

Citation
L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, "Gain dispersion for dissipative soliton generation in all-normal-dispersion fiber lasers," Appl. Opt. 48, 5131-5137 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). [CrossRef]
  2. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons, Lecture Notes in Physics (Springer, 2005), Vol. 661. [CrossRef]
  3. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics (Springer, 2008), Vol. 751.
  4. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77 fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  5. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21, 1759-1761 (1996). [CrossRef] [PubMed]
  6. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group dispersion fiber laser,” Opt. Lett. 31, 1788-1790 (2006). [CrossRef] [PubMed]
  7. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095-10100 (2006). [CrossRef] [PubMed]
  8. A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322-19329 (2008). [CrossRef]
  9. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32, 1806-1808 (2007). [CrossRef] [PubMed]
  10. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140-148 (2008). [CrossRef]
  11. W. H. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814(2008). [CrossRef]
  12. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763-1770 (2008). [CrossRef]
  13. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816(2005). [CrossRef]
  14. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467-471 (2005). [CrossRef]
  15. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15, 2145-2150 (2007). [CrossRef] [PubMed]
  16. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “Generation of multiple gain-guided solitons in a fiber laser,” Opt. Lett. 32, 1581-1583 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1944 KB)      QuickTime
» Media 2: MOV (3933 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited